Evolving XML and Dictionary Strategies for Question Answering and Novelty Tasks

Kenneth C. Litkowski
CL Research
9208 Gue Road
Damascus, MD 20872
ken@clres.com

Abstract

CL Research participated in the question answering and novelty tracks in TREC 2004. The Knowledge
Management System (KMS), which provides a single interface for question answering, text summarization,
information extraction, and document exploration, was used for these tasks. Question answering is performed
directly within KMS, which answers questions either from a repository or the Internet. The novelty task was
performed with the XML Analyzer, which includes many of the functions used in the KMS summarization
routines. These tasks are based on creating and exploiting an XML representation of the texts used for these two
tracks. For the QA track, we submitted one run and our overall score was 0.156, with scores of 0.161 for factoid
questions, 0.064 for list questions, and 0.239 for “other” questions; these scores are significantly improved from
TREC 2003. For the novelty track, we submitted two runs for task 1, one run for task 2, four runs for task 3, and
one run for task 4. For most tasks, our scores were above the median. We describe our system in some detail,
particularly emphasizing strategies that are emerging in the use of XML and lexical resources for the question

answering and novelty tasks.

1 Introduction

In TREC 2002, CL Research examined the
potential of using XML-tagged documents for question
answering (Litkowski, 2003a) and showed that hand-
developed XPath expressions could obtain extremely
good results when compared with the best sytems. In
TREC 2003 (Litkowski, 2004), initial efforts at the
automatic creation of XPath expressions achieved very
limited results. As noted last year, these efforts were
embedded in CL Research’s Knowledge Management
System (KMS), which provides an integrated
framework for question answering, text summarization
(including novelty assessment), information extraction,
and document exploration. As indicated in these
previous papers, use of XML characterizations of texts
raises many challenging research issues. This paper
describes evolving XML and dictionary strategies
employed in KMS, with specific reference to CL
Research’s participation in TREC 2004 question
answering and novelty tracks. In particular, these
strategies have emerged from the fact that the hand-
developed XPath expressions are idiosyncratically
specific and are not generalizable.

KMS was initially developed as an interface to
provide integrated access to XML representations of
documents for question answering and summarization.
In the past year, it has been extended to include a
wrapper for web question answering, use of a search

engine for access to a document collection (such as the
AQUAINT collection), integrated word-sense
disambiguation, and mechanisms for document
exploration based on an ontological analysis of
documents.

Attheroot of KMS, Extensible Markup Language
(XML) provides a natural mechanism for representing
texts, from small snippets like titles through extensive
collections of texts. A valid XML document is a tree
that can represent questions, topic descriptions (such
as used in the novelty task), individual documents, and
collections of documents. Generally, the
representations create nodes for sentences, clauses,
phrases, and words. Each node in the tree will
generally have associated attribute names and values.
A major challenge is determining an appropriate set of
metadata (tags, attributes, and values) for different
tasks. The central approach in performing these tasks
focuses on nodes in the XML representation, primarily
sentences and noun phrases.

Another central component of KMS is the use of
lexical resources. Each task (question answering,
summarization, or document exploration) involves an
attempt to “understand” text. Understanding requires
semantic analysis to characterize and process entities,
events, and relations. KMS now includes many
specialized lexical resources: a dictionary used in
parsing, a machine-readable dictionary, WordNet, the
Specialist Lexicon of the Unified Medical Language

System, specially developed verb and preposition
dictionaries, and a Roget-style thesaurus.

Section 2 presents the TREC QA and Novelty
problem descriptions. Section 3 describes the KMS,
specifically components for processing texts and for
performing particular NLP tasks. Section 4 provides
our question answering results, particularly our
experience in handling different types of questions.
Section 5 describes our novelty experiments,
particularly identifying insights about the nature of the
task as they emerged. Section 6 describes the
underlying functionality used in performing the
question answering and novelty tasks.

2 Problem Description

The TREC 2004 QA and Novelty tasks used the
AQUAINT Corpus of English News Text on two CD-
ROMs, about one million newswire documents from
the Associated Press Newswire, New York Times
Newswire, and Xinhua News Agency. These documents
were stored with SGML formatting tags (XML
compliant).

For the QA track, participants were provided with
65 targets, primarily names of people, groups, and
organizations, viewed as entities for which definitional
information was to be assembled. For each target, a
few factual questions were posed, totaling 230 factoid
questions for the 65 targets (e.g., “Who founded the
Black Panthers organization?” and “Where was it
founded?”). One or two list questions for each target
were also posed for most of the targets (e.g., “Who
were members of the Black Panthers?”); there were 56
list questions. Finally, for each target, “other”
information was to be provided, simulating an attempt
to “define” the target. Each target was used as a search
query against the AQUAINT corpus and the top 50
documents were provided, along with a list of the top
1000 documents.

Participants were required to answer the 230
factoid questions with a single exact answer,
containing no extranecous information and supported
by a document in the corpus. A valid answer could be
NIL, indicating that there was no answer in the
document set; NIST included 22 questions for which
no answer exists in the collection. For these factoid
questions, NIST evaluators judged whether an answer
was correct, inexact, unsupported, or incorrect. The
submissions were then scored as percent of correct
answers. For the list questions, participants returned a
set of answers (e.g., a list of chewing gums);
submissions were given F-scores, measuring recall of
the possible set of answers and the precision of the

answers returned. For the “other” questions,
participants provided a set of answers. These answer
sets were also scored with an F-score, measuring
whether the answer set contained certain “vital”
information and how efficiently peripheral information
was captured (based on answer lengths).

CL Research submitted one run for the question-
answering track.

For the Novelty track, participants were provided
with descriptions of 50 topics (labeled as “event” or
“opinion”) and a set of 25 to 30 documents for each
topic, with as many as 5 not relevant. These documents
were further broken down into sentences. There were
four tasks. For the first task, participants were to
identify sentences relevant to the topic and then to
identify which of these sentences provided novel or
new information. For task 2, participants were given
therelevant sentences from all documents and asked to
identify those which were new. For task 3, participants
were provided with the relevant and new sentences
from the first five documents and asked to identify the
relevant and new sentences for the remaining 20
documents. For task 4, participants were given the
relevant sentences from all documents and the new
sentences from the first 5 documents and asked to
identify the new sentences in the last 20 documents.
The tasks were spread out over a three week period,
with participants given additional information at the
end of the first week.

CL Research submitted two runs for task 1, one
run for task 2, four runs for task 3, and one run for
task 4.

3 The Knowledge Management System

The CL Research KMS is a graphical interface
that enables users to create repositories of files (of
several file types) and to perform a variety of tasks
against the files. The tasks include question answering,
summarization (from headlines to summaries of any
length), information extraction, and document
exploration. The text portions of files are processed
into an XML representation and the actual
performance of each task revolves around an XML-
based analysis of the texts. In the past year, KMS has
been extended to include web-based question
answering (acting as a wrapper to Google) and
indexing of document repositories (using the publicly
available Lucene indexing and search engine).

KMS wuses lexical resources as an integral
component in performing the various tasks.
Specifically, KMS employs dictionaries developed
using its DIMAP dictionary maintenance programs,

available for rapid lookup of lexical items. CL
Research has created DIMAP dictionaries for a
machine-readable version of the Oxford Dictionary of
English, WordNet, the Unified Medical Language
System (UMLS) Specialist Lexicon (which provides a
considerable amount of syntactic information about
lexical items), The Macquarie Thesaurus, and
specialized verb and preposition dictionaries. These
lexcial resources are used seamlessly in a variety of
ways in performing various tasks, described in more
detail below.

KMS consists of a large number of modules.
These modules are also used in two additional
programs that perform more specialized processing.
The DIMAP Text Parser uses the parsing and XML-
generation components for background processing of
large numbers of texts, such as the document sets for
the QA and novelty tasks. The XML Analyzer,
primarily used to enable detailed examination of XML
files for diagnostic purposes, includes special
processing routines to perform the novelty task,
primarily for mapping NIST sentences to KMS
sentences.

When performing a task with KMS, results are
maintained in XML representations. For example, all
answers to questions are retained and saved answers
can be viewed without going through question
answering again. Answers include the file they came
from, the document within the file, the score, an exact
answer, and the sentence from which they were
extracted. (During development, as question answering
routines are modified, new answer sets replace existing
answer sets.)

Improving the performance of KMS in its various
tasks requires improved characterization of the texts,
development of appropriate strategies for performing
the tasks, and the use of efficient mechanisms for
evaluating performance. XML provides a convenient
formalism for representation and analysis, but this
approach involves frequent reformulations to capture
and recognize large numbers of linguistic phenomena.
Improvements come from first dealing with low-level
phenomena, sometimes idiosyncratically, and then, as
patterns emerge, from generalizing over several
phenomena. In general, improved characterization of
linguistic phenomena leads to improved performance.

3.1 Text Processing

As described in previous years (see Litkowski,
2004 and references therein), the text processing
component consists of three elements: (1) a sentence
splitter that separates the source documents into

individual sentences; (2) a parser which takes each
sentence and parses it, resulting in a parse tree
containing the constituents of the sentence; and (3) a
parse tree analyzer that identifies important discourse
constituents (sentences and clauses, discourse entities,
verbs and prepositions) and creates an XML-tagged
version of the document.

The rendition of raw text into XML is not
completely accurate. Problems arise from improper
sentence splitting, the inability of the parser to handle
many sentences, incomplete and inaccurate mapping
of the parse output into the underlying data structures,
and inaccurate rendition of the underlying data into a
complete XML representation. Sentence splitting is
over 99 percent accurate. Poor parses occur in about 50
percent of the sentences, but the parse output generally
provides chunks (such as noun phrases), so that the
various underlying data are reasonably complete.
However, only about 75 percent of the underlying is
ultimately rendered into XML, primarily as a result of
difficulties in handling clauses.

In the past year, two major changes were made in
the XML representation. Before, discourse entities
wererepresented solely as units, with various attributes
(such as the base form of plural heads or whether it
contained an ordinal or degree adjective) in the node
for the entire unit. These entities have now been given
substructure, identifying and characterizing the
component words (adjectives, conjunctions, adverbs,
and nouns) and these words have been disambiguated
using WordNet. In addition, the possible semantic
types of nouns and verbs have been identified, using
WordNet’s broad semantic groups.

For TREC, there was an XML file for each of the
65 targets in the QA track and for each of the 50 topics
in the novelty track. XML tagging of these files
resulted in files that were 9.1 times the size of the
original documents, up from 6.7 during TREC 2003.

Questions in the QA track and the title,
description, and narrative in the novelty track are
processed using the same text processing mechanisms.
The XML representations of the track “topic”
statements are used in performing the question
answering or novelty detection. Since these topic
statements are not as voluminous as the documents for
these topics, they tend to be somewhat smaller and less
elaborate in complexity.

The tagging process is in continual development.
Improvements arise in the first instance from detecting
bugs in the parser, extracting more information from
the parse results, and detecting bugs in the creation of
the lists for sentences, clauses, noun phrases, verbs,
and prepostions. In the second instance, improvements
arise from improved use of lexical resources for

characterizing the various elements. Finally,
improvements occur asthe system is expanded to cover
more linguistic phenomena, particularly in
characterizing semantic relations between various
discourse elements.

3.2 KMS Question Answering Strategies

As indicated above, KMS has been modified to
include a wrapper for a Google search. Users can select
to have questions answered using a repository of
documents or from Google. As with answers against a
repository, web answers are maintained in their own
file, in this case showing the web address of the
document answering the question. KMS can use the
TREC question set and have them submitted to
Google, or a user can pose any question and the
question is saved in a repository of questions.

Answering a question using Google (or any web-
based search engine) goes through a slightly different
strategy than against a repository. The main difference
is how the question is analyzed and formulated for
submission to Google. Given the breadth of the
Internet, there is a strong likelihood that a question
can be answered using a canonical form. For example,
to the “When was John Glenn born?”, it is likely that
“John Glenn was born” will exist as an exact phrase
and that a search for the entire phrase as given will
return documents where the displayed Google results
will contain the answer.

Each question must be reformulated into an exact
query. KMS analyzes the question type and its
constituent terms to determine what is likely to be the
best form. For the most part, the key transformation
involves the placement, number, and tense of the verb.
For example, “How did James Dean die?” has to be
transformed to “James Dean died”. KMS uses the
UMLS lexicon for this purpose, since it contains
information about the “regularity” of a verb form and
how it’s various tenses are formed. Special routines are
used for “definition” questions (e.g., “What is a
cataract?”’) to make use of Google’s “define:” operator.

In answering a question from Google, it is usually
unnecessary to go to the source document. In its search
results, Google displays a snippet that usually consists
of one or two sentences, along with some additional
partial sentences. KMS examines the snippet and
extracts the whole sentence containing the exact
phrase. This single sentence is then treated as a
document and is parsed and processed into an XML
representation. Since Google usually returns 10 hits
per page, the corpus to answer a question usually
consists of 10 single-sentence documents. (For

definition questions, Google may return many more
“documents”, each of which is in the form of a
definition from some source; a definition may contain
more than one sentence, frequently several when the
source is a technical glossary.) After extracting these
sentences, the usual KMS mechanisms are employed
to analyze the questions and extract the answers, with
results displayed according to the score for each
sentence.

In initial testing of the KMS Google search, using
the TREC 2002 and TREC 2003 factoid questions, the
number of exact answers, the number of sentences (or
passages), and the mean reciprocal ranks were all
equivalent or better than CL Research’s official results.
For example, for TREC 2002 questions, exact answers
were obtained for 60 of 500 questions. These results
were achieved despite many shortcomings such as
cases whereno search string was formulated, sentence
extraction from the Google results was not made
properly, and question answering routines were still in
their initial stages of development.

The use of Lucene in KMS is in the preliminary
stages of development. Lucene comes into play when
KMS is unable to answer a question with the
repository, i.e., no answers are generated. In such
cases, the search terms are reformulated, based in part
on the Google search query, as the search specification
for a Lucene query. The query is submitted to Lucene
and document numbers are obtained as the answers.
These document numbers are compared with those in
the repository and the top 5 that are not in the
repository are used to create an auxiliary file from the
AQUAINT CDs. This file is then parsed and processed
into an XML representation and the typical question-
answering routines are invoked in an attempt to
answer the question from these new documents. This
procedure has not yet been tested on TREC 2002 and
TREC 2003 questions, where more than 25 percent of
the questions do not have answers in the top 50
documents provided by NIST. In TREC 2004, the
procedures using Lucenewere invoked in only 9 of the
230 factoid questions and succeeded in providing
answers to only 2 of these questions.

3.3 Evaluation Mechanisms

The development and assessment of strategies for
question answering and novelty detection using XML
representations and lexical resources is quite complex.
Theprocess essentially requires a detailed examination
of the XML representation of individual sentences to
identify discourse structure, syntactic, and semantic
characteristics that indicate how an answer might be

extracted or the relevance and novelty of the sentence
canbe judged. As aresult, scoring programs have been
constructed to facilitate the development and
assessment of strategies. These programs not only
provide a mechanism for gauging progress, but since
they involve accessing the XML representations of the
documents, their continued development also leads to
the identification of new procedures that can be
incorporated in performing the tasks themselves.

The QA scoring program is centered on the
answer patterns (as Perl-compatible regular
expressions) developed from the NIST judgment sets.
Generally, these are easily developed for factoid and
list questions, where exact answers are required,
although the NIST-supplied list answers need to be
examined for conformance to the judgment set. For
definition or “other” questions, the nuggets identified
as vital or “okay” seldom reflect the answers judged
correct and it is more difficult to develop Perl regular
expressions for them. In scoring answers, the program
determines whether the answer satisfies the Perl
regular expression.

In addition to the answer patterns, this program
takes the list of questions and the files of answers as
input. As indicated above, the answer files are
structured in XML format. For ease of development,
questions are subdivided by type, generally
corresponding to the automatic identification of
question type used in KMS.

Scoring an answer set is based on the NIST
question type (factoid, list, or definition). For factoids,
the rank and number of answers is provided for both
exact and sentence answers. The summary score shows
how many exact answers have been obtained in the
first position and also computes the mean reciprocal
rank of the answers. For list questions, the scoring
program shows the number of correct answers, the
number of answers returned by KMS, the number of
these answers that are correct, the instance precision,
the instance recall, and the F-score. For definition or
“other” questions, the scoring program shows the
number of correct nuggets, the number of answers
returned, the number of answers that are correct, the
nugget precision, the nugget recall, and the F-score.
Since answers to definition questions include both
exact answers and the sentences in which they are
contained, the scoring program computes these scores
for either type. For list and definition questions, the
scoring follows the NIST specification and the average
F-score over all questions is determined.

The scoring program is also designed to enable
more detailed examination of the answers for each
question. Clicking on an individual question brings up
a display that provides all the details for each question:

the question number, the question, the XPath
expression that was used in answering the question,
the Google search string that was generated, the list of
correct answers, and each answer that was returned by
KMS. Each answer shows the score, the document and
sentence number, the answer rank, the exact answer,
the sentence answer, and whether the answer was
judged correct against the Perl patterns. Another
button enables the document collection for a question
to be examined in full for the presence of the Perl
pattern(s). Each sentence of the collection is examined
in turn and all sentences containing each pattern are
identified with their document and sentence numbers.

The information provided in the scoring program
provides the basis for more detailed analysis and more
efficient improvement in the KMS routines. The
search strings and XPath expressions can be used in
the XML Analyzer. The document and sentence
numbers can be used to focus on the XML
representation for the individual sentence. In addition
to aiding development, the scoring program provides
feedback to the evolution of KMS. For example, in
displaying KMS results, functionality has been added
to enable a user to examine the context within which
an answer occurs and to look at the detailed XML
representation.

As a result of working with the QA scoring
program, several issues have emerged with regard to
the TREC scoring metrics. By focusing only on the top
answers, the overall precision and recall of a system is
not assessed. The NIST judgment sets provide (at least
an initial) full identification of all the instances in the
AQUAINT collection of where answers occur. A more
complete assessment of a system’s performance would
use these as the basis for computing an overall F-score.
Such a metric would identify how many instances of
correct answers are found; such a metric is important
to provide an indication of the confidence a user might
place in the answers, as well as allowing the system to
estimate how many answers support one another.

Thenoveltyscoring program has been constructed
on similar principles. The input to this program
consists of the novelty topic file, the answer file
identifying documents and sentences judged relevant
or novel, and the NIST qrels files containing the
assessors’ judgments of which sentences are relevant
and novel. The scoring corresponds exactly to the Perl
script NIST provides for evaluating a run. For each
topic, the scoring program shows the number of
relevant or novel sentences as judged by the NIST
assessors, the number of sentences returned by the
system, the number of matches, the precision, the
recall, and the F-score. The overall precision, recall,
and F-score are also computed.

Selecting an individual topic uses the NIST topic
file to show the topic type, title, description, and
narrative. By checking or unchecking options, the
scoring program then shows “mistakes” for either the
relevant or new assessments. The mistakes include
either the sentences that have not been recalled (i.e.,
recall) or the sentences that have been erroneously
included (i.e., precision). These sentences are obtained
from the XML representation of the document set
corresponding to a topic, and show the document and
sentence numbers that can then be used in the KMS
development environment. This scoring program will
be extended to provide more details on why individual
sentences were assessed incorrectly.

4 TREC 2004 Question-Answering

CL Research submitted one run for the TREC
2004 question-answering track. All answers were
generated in KMS. The question set provided by NIST
was first converted into a form for parsing and
processing into an XML representation. The top 50
documents for the 65 targets were also processing into
an XML representation. The questions are displayed in
KMS, each with a checkbox used to select which
questions are to be answered. All questions were
selected and answered automatically, generating an
answer file as described above. A Perl script was then
used to create an answer file in the format required for
a QA track submission.

Conversion of the NIST question set involved
minor formatting changes (using a different tag set)
and a more considerable anaphora replacement
algorithm. For TREC 2004, this was performed in a
Perl script, rather than attempting to use the potential
capabilities of KMS for capturing anaphoric
references. The Perl script identified all referring
expressions in the questions, including anaphors such
as her, it, and their and definite noun phrases such as
“the organization.” The script kept track of the type of
anaphors so that the “other” question could be
converted to either “Who is” or “What is”. The revised
question set was added to KMS as a question list from
which question selection could be made.

As described in Litkowski (2004), the question
answering process in KMS begins with an analysis of
the question. The analysis first assesses the question
typeand determines whether the surface form indicates
that the type can be changed to one that can best be
handled by a different set of routines than might at
first be indicated. For example, “what cities” would be
changed to a where question and “what year” would
be changed to a when question. This assessment is

quite principled and is based on an analysis of the head
noun in the question element. Specifically, the
WordNet file numbers are used to characterize the
head noun into one of 25 types. Question analysis also
involves identification ofa focal noun, a key noun, an
expected hypernym of an answer, a key verb, and the
types of the other terms used in the question (such as
modifiers and quoted material). For some questions,
this analysis can be complex. For example, “what kind
of community is a kibbutz?” indicates that an answer
should have a hypernym of “community”.

After the question analysis, a basic XPath
expression is created for the question. This XPath
expression specifies what a sentence should contain. It
indicates that only nodes that are of type segment and
having a sent attribute are to be used, i.e., that
sentences are treated as the primary unit of analysis.
This specification also identifies words that must be
present in the sentence. These words are taken from
the focal and key nouns, the hypernym, and other key
elements. They are put together as a set of alternatives
and thus act as a very minimal filter on acceptable
sentences. This specification essentiallyactsas passage
retrieval of sentences from the entire set of documents.

At this point in the question-answering process,
further analysis becomes question-type specific. The
basic XPath expression is customized to look for
(primarily) specific types of discourse entities (nodes of
type discent) in the set of sentences. In some cases, the
specification asks for verbs (nodes of type verb) or
prepositions (nodes of type semrel). In all cases, some
further restrictions are placed on the content or
attributes of the node.

For questions containing ordinal or degree
modifiers, the discourse entity might be required to
have an ordinal or degree modifier (ord or deg
attributes, regardless of the value of these attributes).
The specification might require a specific syntactic
role (synrole equal to subj). Frequently, the specific
value of the discent node or its antecedent may be
required; an exact match may be specified or the value
may require only that a specific word be part of the
value. In some cases, the specification may require a
discent that has a synrole of subj preceding a verb
having a value or base equal to the key verb. In
general, however, this last level of specification is
proving to be too restrictive, requiring that an answer
adhere to a detailed set of requirements. Instead, less
restrictive specifications are made, relegating the
identification of the more specific requirements to the
analysis performed in evaluating potential answers.

After the basic XPath expression has been refined
based on the question type, the query is submitted to

the document set and a set of potential answers is
obtained. These answers are sent to question-type
specific routines for detailed analysis (described in
Section 6). Each potential answer is scored and a
decision is ultimately made to keep or discard it. Each
answer to be kept is evaluated finally for whether it
duplicates an existing answer. Finally, the various
characteristics of the answer are assembled into an
array of answers, sorted by score, and including the
document and sentence numbers and the exact and
sentence answer. After all potential answers are
evaluated, the final answer set is constructed, displayed
in KMS, and saved to the answer file.

Table 1 shows the summary score for the CL
Research QA run, along with the median score for all
participating teams, broken down by major question
type. The table also shows the current score based on
changes made to KMS after the official results were
provided in late September.

Table 1. Summary Score
Factoid | “Other” List
(0.170) | (0.184) | (0.094) |Overall
Official | 0.161 0.239 0.064 0.156
Current | 0.191 0.239 0.106 0.182

As can be seen, CL Research scored somewhat
higher than the median for the “other” component and
somewhat less for the factoid and list components,
which have since been improved slightly to above the
medians. These results are considerably improved over
CL Research’s performance in TREC 2003 with an
overall score 0f 0.075. This improvement was achieved
with only about 80 hours of effort in modifying the
core QA routines. The improvement to the current
level was made with an additional 20 hours of effort.
As will be described in Section 6, the improvements
have come from the development of new mechanisms
for manipulating and analyzing the XML
representation. These new mechanisms have generally
been developed in routines for analyzing specific
question types, and have not yet been applied, where
possible, to other question types. As indicated below,
considerable opportunity still remains for exploiting
the XML approach to question answering.

Tables 2 and 3 show the official and improved
scores for the factoid questions by question type. The
improvements in Table 3 indicate the procedure
followed in making changes to KMS, viz., working on
question types that have the lowest score until they are
no longer the lowest.

Table 2. Factoid Questions (Official)
Question
Type |Number | Correct |Accuracy | MRR

How 3 0 0.000| 0.000
HowMany 20 2 0.100| 0.150
HowMeas 8 0 0.000] 0.000
HowMuch 2 0 0.000| 0.000
Whatls 39 4 0.103[0.109
WhatNP 35 7 0.200(0.219
WhatVP 6 1 0.167| 0.167
When 57 13 0.228[0.270
Where 28 4 0.143| 0.168
Who 4 0 0.000| 0.000
Whols 15 0 0.000(0.013
WhoVP 11 3 0.273| 0.273
Why 2 0 0.000| 0.000
Total 230 34 0.148[0.171

Table 3. Factoid Questions (Improved)
Question
Type |Number | Correct |Accuracy | MRR

How 3 1 0.333| 0.333
HowMany 20 2 0.100| 0.150
HowMeas 8 1 0.125] 0.125
HowMuch 2 1 0.500(0.500
Whatls 39 4 0.103[0.109
WhatNP 35 7 0.200(0.219
WhatVP 6 1 0.167| 0.167
When 57 13 0.228[0.270
Where 28 4 0.143| 0.168
Who 4 1 0.250(0.250
Whols 15 2 0.133| 0.161
WhoVP 11 3 0.273| 0.273
Why 2 1 0.500(0.500
Total 230 41 0.178[0.202

S TREC 2004 Novelty

Our participation in the Novelty track had two
main components, one implementing special
procedures to handle the various tasks, and the other
implementing the procedures for actually performing
thetasks. Our procedures were largelyunchanged from
those used in TREC 2003, except for the use of verbs
in addition to discourse entities in identifying the
relevance of sentences and the use of a test for
communication verbs when “opinion” was part of the
narrative specification.

In order to allow KMS to process the Novelty texts
and build XML representations for them, we first
added wrappers to the NIST provided texts to make
them XML compliant. We then processed the files
with KMS. Similarly, we added wrappers to the topic

file to make it XML compliant, and then processed it
with KMS, processing as text the title, description, and
narrative fields. For tasks 2, 3, and 4, we converted the
NIST-provided qrels files of relevant and new
sentences into XPath expressions that would select the
corresponding sentences from the XML versions of the
NIST texts.

5.1 Determination of Relevance

The basic relevance judgment for a sentence was
determined by examining its discourse entities and
antecedents if a discourse entity had an antecedent
(anaphors, coreferents, or definite noun phrases). Each
word, except words on a stop list, was compared to the
list of words obtained from the topic. Verbs in thetopic
specification werealso used (in their base form). When
the topic specification indicated that the topic type was
“Opinion” or when an Event topic type included a
word that asked for opinions, a test was made on verbs
in the sentences to determine if they were
“communication” verbs, as identified by WordNet. The
basic criterion for selection of a sentence as relevant
was whether a sentence had two or more hits.

For task 1, the basic criterion was applied using
all information from the title, the description, and the
narrative. When a sentence in the topic description
contained the word “irrelevant” or “not relevant”,
words in the sentence were removed from the list for
measuring hits. One run used two or more hits and the
other required three or more hits.with one run using
only the title, one run using the title and the
description, and a third run using the title, the
description, and the narrative (with words in sentences
containing the word “irrelevant” or the phrase “not
relevant” excluded from the list). A fourth run used all
the information as in the third run but required three
or more hits. (In TREC 2003, we had used varying
amounts of information, but found that using all
information provided the best overall results, so we
eliminated those distinctions in TREC 2004.)

For task 3, where relevant sentences were
provided for the first five documents, a frequency list
was developed for words in discourse entities or
antecedents. The total number of words in this list was
also determined. For each sentence, a frequency score
was computed as the sum of the frequency count for all
word in the sentence on the frequency list divided by
the total number of words on this list. Then, the basic
criterion was modified. Sentences with two or more
hits were still selected as relevant, but also sentences
with a frequency score greater than a specified level
were also selected as relevant. For task 3, four runs

were submitted based on different frequency scores,
0.01, 0.02, 0.03, 0.04, and 0.05. The lower scores
allow more sentences, thus increasing recall.

5.2 Determination of Novelty

Once a set of sentences had been selected as
relevant, they were considered in order to determine
novelty. Sentences that were exact duplicates were first
eliminated. Next, each discourse entity was evaluated
for novelty against an accumulating list of all unique
discourse entities encountered thus far. Again,
antecedents were used in preference to the actual
discourse entity for anaphors, coreferents, and definite
noun phrases that had a non-empty antecedent
attribute. If a discourse entity from the current
sentence being evaluated was not found, it was added
to the growing history list and the sentence was
accepted as novel. In evaluating a discourse entity, if
all of its words were present in a discourse entity
already on the history list, the candidate was viewed as
old information. If all discourse entities in a sentence
were present on the history list, the sentence being
evaluated was characterized as overlapping with prior
information and thus eliminated from the set of novel
sentences.

For task 1, the novel sentences were selected from
the relevant sentences that had been determined as
described above. For task 2, where all relevant
sentences were given, only these were considered in
determining novelty; this task thus provides a
reasonable characterization of the novelty component
by itself. For task 3, the novel sentences were selected
from among a wider set than those used in task 1,
since these were conditioned by the greater recall of
relevance sentences; sentences from the qrels provided
for the first five sentences were removed from
consideration for novelty. For task 4, we submitted the
same results as for task 2, since our novelty routines at
this time contained no processing that would take into
account sentences that had been identified as being
novel; the submission only removed sentences fromthe
first five documents.

5.3 Novelty Track Results

For the Novelty track, we submitted two runs for
task 1, one run for task 2, for runs for task 3, and one
run for task 4; our submissions for tasks 2 and 4 were
identical.

Our results for Task 1 are shown in Table 4 for
relevance and Table 5 for novelty.

Table 4. Task 1 (Relevance)
Run Precision Recall F-Score
clr04n1h2 0.33 0.68 0.394
clr04n1h3 0.37 0.50 0.367

Last year, the comparable run to clr04n1h2 received a
precision of 0.69, a recall of 0.45, and an F-score of
0.483. The comparable run to clr04n1h3 received a
precision of 0.72, a recall of 0.24, and an F-score of
0.316.

Table 5. Task 1 (Novelty)
Run Precision Recall F-Score
clr04n1h2 0.15 0.62 0.216
clr04n1h3 0.17 0.46 0.213

Last year, the comparable run to clr04n1h2 received a
precision of 0.50, a recall of 0.40, and an F-score of
0.410. The comparable run to clr04nlh3 received a
precision of 0.51, a recall of 0.24, and an F-score of
0.278.

For task 1, our best run received an F-score of
0.394 for relevant sentences and 0.216 for new
sentences; this was higher than the median of 0.379 for
relevant sentences and 0.193 for novel sentences. The
second run had a lower score than the median for
relevance, but was still higher than the median for
novelty. These results clearly demonstrate that the
more restrictive run requiring three or more hits had a
significantly lower recall.

The results for task 1 changed quite significantly
for TREC 2004 compared with TREC 2003. In tuning
our system with TREC 2003 topics, we had increased
our performance to a level in the top four for both
relevance and novelty. This was achieved primarily
through a considerable increase in recall, without too
much of a decrease in precision. While the change in
recall held firm in TREC 2004 (over 0.20
improvement), precision descreased dramatically.
Although we did not have the detailed precision and
recall for other participants in TREC 2004, the overall
F-scores for all participants declined significantly. It is
likely that this dramatic decrease stems from the
sharply reduced number of relevant and novel
sentences identified in TREC 2004, from 15557 to
8343 for relevant sentences and 10226 to 3454 novel
sentences. It would seem that the NIST assessors
became more familiar with the novelty task and were
more demanding in accepting sentences as relevant
and novel. This suggests that systems will
correspondingly need to achieve comparable levels of
specificity.

Our results for Task 2 are shown in Table 6. Run
clr04n2 is our official submission, and run clr04n2a is
a revised submission.

Table 6. Task 2 (Novelty)
Run Precision Recall F-Score
clr04n2 0.28 0.93 0.410
clr04n2a 0.45 0.86 0.574

Last year, the comparable run to clr04n2 received a
precision of 0.71, a recall of 0.91, and an F-score of
0.788. In examining our results for run clr04n2, we
observed that the number of sentences returned
(13047) considerably exceeded the number of relevant
sentences provided in the grels (8343). We found that
this arose from code that had not been removed and
that had expanded the reduced set identified by the
qgrels back to the original full set of sentences. After
removing this code and scoring the revised run, our
results were changed significantly, up to the level of
the average F-score for all participating teams.

Notwithstanding the change from the revised run,
our results are still significantly lower than those
achieved in TREC 2003. Again, the decline in
performance arises primarily from the lower precision.

Our results in Task 3 are shown in Table 7
(relevance) and Table 8 (novelty).

Table 7. Task 3 (Relevance)

Run Precision Recall F-Score
clr04n3h1fl 0.30 0.85 0.405
clr04n3h 12 0.30 0.85 0.405
clr04n3h2fl1 0.31 0.81 0.404
clr04n3h2f2 0.32 0.78 0.410

Last year, the best run for Task 3 received a precision
of 0.48, a recall of 0.77, and an F-score of 0.541.
Again, our results show that our efforts to improve
recall were offset by significant declines in precision.

Table 8. Task 3 (Novelty)

Run Precision Recall F-Score
clr04n3h1fl 0.13 0.77 0.203
clr04n3h 12 0.13 0.77 0.203
clr04n3h2fl1 0.13 0.73 0.206
clr04n3h2f2 0.14 0.71 0.209

Last year, the best run for Task 3 comparable run to
clr04n2 received a precision of 0.33, a recall of 0.73,
and an F-score of 0.408. It is possible that the low
scores on novelty were affected by the errant code, but
we have not yet rerun this submission to examine this
possibility.

Our results for the relevance portion of Task 3
were all higher than the median of all participants
(0.376). For novelty, our results were slightly lower
than the median for all runs.

Our resutls for Task 4 are shown in Table 9.

Table 9. Task 4 (Novelty)
Run Precision Recall F-Score
clr04n4 0.22 0.92 0.332

Last year, our results for Task 4 received a precision of
0.53, arecall of 0.91, and an F-score of 0.655. Again,
we are certain that the errant code significantly
affected our precision, since the number of sentences
identified as novel (13011) is much larger than the
number identified as relevant.

6 Functions Supporting Evaluation

As indicated above, evaluation of potential
answers for both question answering and novelty is
performed in individual functions that are specific to
the type of question or the assessment of relevance or
novelty (which is subsumed wunder KMS’
summarization routines). Within each of these broad
functions, various low-level functions are used to add
or deduct points from scores that eventually determine
whether an answer is retained or discarded. These
functions can be grouped into (1) XML functions, (2)
linguistic functions, (3) dictionary access functions
(DIMAP and WordNet), (4) summarization functions,
and (5) miscellaneous functions.

6.1 XML Functions

Basic XML functions are used to maneuver
around the XML trees representing the documents and
to examine characteristics of nodes in the tree. The
development environment provides several of these
functions, the most important of which is used to select
nodesets using XPath expressions. The XPath
expressions may be applied from any given node in the
XML trees, perhaps starting from the root node, and
frequently used in examining the child nodes of other
specific nodes, such as sentence nodes. XPath
expressions are used for selecting sentence nodes
(passage retrieval) and selecting sentence elements
(clauses, discourse entities, verbs, prepositions),
frequently specifying attribute names and values.
Usually, routines are implemented for iterating over
the nodesets.

While XPath expressions may be used for a variety
of other tests, simple functions are used instead to

accomplish these objectives. Two basic functions ask
whether a node is of a given type and whether a given
node has a particular attribute and value. Two other
basic functions obtain the value of a node (i.e., its text)
or the value of an attribute. Another commonly used
function is used to identify the sentence node from one
of its children, such as a discourse entity that is being
evaluated as a potential answer. Retrieving the
sentence node facilitates examination of the context
surrounding the node being evaluated. Another
common function retrieves the document number and
sentence containing a given node. While this function
is used essentially in providing an answer, it is also
used to compile lists of document numbers and
sentence numbers (such as in summarization).

6.2 Linguistic Functions

Linguistic functions are combinations of basic
XML functions used to test or retrieve other elements
in a sentence. They usually begin with a particular
node in the XML representation and examine
characteristics of the particular node or examine its
child nodes (if it is a composite node) or its siblings
(i.e., words or nodes before or after the given node).

One group of functions perform basic syntactic
tests. One function tests whether a verb is active or
passive. Some simple linguistic functions retrieve the
subject or object of a verb or look for a prepositional
phrase of a given type in relation to a verb or noun
phrase. For example, for a WhoVP question (“Who
wrote X?”), if the verb is passive, the author might be
sought in a prepositional phrase beginning with “by”.

Functions that test for appositives are commonly
used. These functions may look for appositives
following a noun phrase or may look to see if the
current node is in an appositive and modifies a noun
phrase that should be the answer. Appositives may be
identified in many ways, including that, who,
or-appositives, comma-delimited phrases, and
parentheticals, either tagged as such or using string
pattern matches. As indicated above, the potential
answers submitted to the evaluation routines for
particular question types are frequently the focal point
of the evaluation, and they may be replaced by a new
node, such as an appostive.

Some linguistic functions look for the specific
strings in the surrounding text, such as the phrase
“such as” or a comma followed by an “or”. A function
is used for copular verbs to retrieve the noun phrase
following the verb. Another verb function obtains the
the verb and following noun phrase and modifiers of
the noun phrase (such as “won five Olympic medals™).

Several functions are used to “extend” an answer, e.g.,
obtaining two or more prepositional phrases unbroken
by discourse markers such as commas. The appositive
and copular functions are particularly useful in
providing definitional information.

6.3 DIMAP and WordNet Functions

Since lexical resources are used heavily in KMS,
many functions have been developed to access
dictionary information. Most of these lexical resources
are integrated using DIMAP data structures and are
accessible via rapid lookup methods. Several
dictionaries are accessible and used in tandem: a
machine-readable dictionary, WordNet, the Unified
Medical Language System Specialist Lexicon (which
contains considerable syntactic characterizations of
general vocabulary as well), and a specially
constructed preposition dictionary used for
characterizing semantic relations.

The machine-readable dictionary is an auxiliary
dictionary that has been constructed with definition
features and various hypernymic and other relational
information characterizing a sense. These entries are
examined for particular features. Several functions are
designed to examine the dictionary entries and
accumulate properties that can then be tested. These
include measuring the overlap between definitions and
the context of a word in documents (as frequently used
in word-sense disambiguation), testing for the presence
of particular words (such as “unit” to indicate that a
preceding number is a unit of measure), and obtaining
a person’s first name.

WordNet has also been structured as a DIMAP
dictionary and several functions are used to examine
its contents. These include obtaining a list of a word’s
synonyms and testing for word equivalence. Other
functions test for a semantic class, e.g., using WordNet
tops or file numbers). Several functions examine
hypernymic relations, in a node, other entities in a
sentence, or in appositives. Other functions test other
relations, particularly derivative forms (e.g., die,
dying, death, died) and pertainyms (e.g., old => age),
identifying and testing measure type, and unbundling
hyphenated forms (e.g., 4-day vigil).

6.4 Summarization Functions

Summarization functions gather information about
the dominant theme of documents, identify key words,
construct frequency counts, and assess the relative
importance of a sentence in characterizing a document.

Frequency counts of words are generated. This
involves replacing anaphors, coreferring expressions,
and definite noun phrases with their antecedents.
Phrases are split into words and each word is
examined against a stop list. Similarly, frequency
counts of whole discourse entities may be generated,
e.g., so that the first names of people may be ignored
in frequency counts. Key word lists are generated from
these frequency counts to combine words into phrases.

Sentences can be scored against the frequency
counts, e.g., to identify top sentences containing
dominantthemes or toidentify sentences that are being
measured against some topical focus. Lists of unique
discourse entities are generated for use in assessing
duplication of discourse entities with previous
mentions and to assess the overall duplication of a
sentence with those in a growing list. These functions
are particularly relevant to novelty assessments.

6.5 Miscellaneous Functions

Miscellaneous functions test for the presence of
key words, look for string pattern matches, examine
person names in detail. In examining key words,
functions ask whether a key noun or key verb is
present in a sentence, whether all words in a
compound focal noun are present, whether all
qualifiers of the focal noun are present in the sentence
or in a clause, and whether the proper ordinal or
degree modifiers are present (e.g., first or highest).
String matches may look for specific words following
a hypernym (called or such as), look for titles works,
testing for an acronym or a brand name, or look for
complete date strings. Another function will examine
whether the document is referring to the correct person
(i.e., is a person’s first name present, e.g., is the
correct “Mosley” or “Patterson”).

7 Summary

Our results on the QA and Novelty tracks indicate
that our approach of using massively XML-tagged
documents is worth continuing. There are many
opportunities still to be investigated.

References

Litkowski, K. C. (2004). Use of Metadata for
Question Answering and Novelty Tasks. In E. M.
Voorhees & L. P. Buckland (eds.), The Eleventh Text
Retrieval Conference (TREC 2003). NIST Special
Publication 500-255. Gaithersburg, MD., 161-170.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Overall

	Page 8
	Page 9
	Page 10
	Page 11

