
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1257–1268,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

A Fast, Accurate, Non-Projective, Semantically-Enriched Parser

Stephen Tratz and Eduard Hovy
Information Sciences Institute

University of Southern California
Marina del Rey, California 90292
{stratz,hovy}@isi.edu

Abstract

Dependency parsers are critical components
within many NLP systems. However, cur-
rently available dependency parsers each ex-
hibit at least one of several weaknesses, in-
cluding high running time, limited accuracy,
vague dependency labels, and lack of non-
projectivity support. Furthermore, no com-
monly used parser provides additional shal-
low semantic interpretation, such as prepo-
sition sense disambiguation and noun com-
pound interpretation. In this paper, we present
a new dependency-tree conversion of the Penn
Treebank along with its associated fine-grain
dependency labels and a fast, accurate parser
trained on it. We explain how a non-projective
extension to shift-reduce parsing can be in-
corporated into non-directional easy-first pars-
ing. The parser performs well when evalu-
ated on the standard test section of the Penn
Treebank, outperforming several popular open
source dependency parsers; it is, to the best
of our knowledge, the first dependency parser
capable of parsing more than 75 sentences per
second at over 93% accuracy.

1 Introduction

Parsers are critical components within many natu-
ral language processing (NLP) systems, including
systems for information extraction, question answer-
ing, machine translation, recognition of textual en-
tailment, summarization, and many others. Unfortu-
nately, currently available dependency parsers suf-
fer from at least one of several weaknesses includ-
ing high running time, limited accuracy, vague de-
pendency labels, and lack of non-projectivity sup-
port. Furthermore, few parsers include any sort of

additional semantic interpretation, such as interpre-
tations for prepositions, possessives, or noun com-
pounds.

In this paper, we describe 1) a new dependency
conversion (Section 3) of the Penn Treebank (Mar-
cus, et al., 1993) along with the associated de-
pendency label scheme, which is based upon the
Stanford parser’s popular scheme (de Marneffe and
Manning, 2008), and a fast, accurate dependency
parser with non-projectivity support (Section 4) and
additional integrated semantic annotation modules
for automatic preposition sense disambiguation and
noun compound interpretation (Section 5). We show
how Nivre’s (2009) swap-based reordering tech-
nique for non-projective shift-reduce-style parsing
can be integrated into the non-directional easy-first
framework of Goldberg and Elhadad (2010) to sup-
port non-projectivity, and we report the results of our
parsing experiments on the standard test section of
the PTB, providing comparisons with several freely
available parsers, including Goldberg and Elhadad’s
(2010) implementation, MALTPARSER (Nivre et al.,
2006), MSTPARSER (McDonald et al., 2005; Mc-
Donald and Pereira, 2006), the Charniak (2000)
parser, and the Berkeley parser (Petrov et al., 2006;
Petrov and Klein, 2007).

The experimental results show that the parser is
substantially more accurate than Goldberg and El-
hadad’s original implementation, with fairly simi-
lar overall speed. Furthermore, the results prove
that Stanford-granularity dependency labels can be
learned by modern dependency parsing systems
when using our Treebank conversion, unlike the
Stanford conversion, for which Cer et al. (2010)
show that this isn’t the case.

The optional semantic annotation modules also
1257

perform well, with the preposition sense disam-
biguation module exceeding the accuracy of the pre-
vious best reported result for fine-grained preposi-
tion sense disambiguation (85.7% vs Hovy et al.’s
(2010) 84.8%), the possessives interpretation sys-
tem achieving over 85% accuracy, and the noun
compound interpretation system performing simi-
larly to an earlier version described by Tratz and
Hovy (2010) at just over 79% accuracy.

2 Background

The NLP community has recently seen a surge of
interest in dependency parsing, with several CoNLL
shared tasks focusing on it (Buchholz and Marsi,
2006; Nivre et al., 2007). One of the main advan-
tages of dependency parsing is the relative ease with
which it can handle non-projectivity1. Additionally,
since each word is linked directly to its head via a
link that, ideally, indicates the syntactic dependency
type, there is no difficulty in determining either the
syntactic head of a particular word or the syntactic
relation type, whereas these issues often arise when
dealing with constituent parses2.

Unfortunately, most currently available depen-
dency parsers produce relatively vague labels or, in
many cases, produce no labels at all. While the
Stanford fine-grain dependency scheme (de Marn-
effe and Manning, 2008) has proven to be popular,
recent experiments by Cer et al. (2010) using the
Stanford conversion of the Penn Treebank indicate
that it is difficult for current dependency parsers to
learn. Indeed, the highest scoring parsers trained us-
ing the MSTPARSER (McDonald and Pereira, 2006)
and MALTPARSER (Nivre et al., 2006) parsing suites
achieved only 78.8 and 81.1 labeled attachment
F1, respectively. This contrasted with the much
higher performance obtained using a constituent-to-
dependency conversion approach with accurate, but
much slower, constituency parsers such as the Char-
niak and Johnson (2005) and Berkeley (Petrov et
al., 2006; Petrov and Klein, 2007) parsers, which
achieved 89.1 and 87.9 labeled F1 scores, respec-
tively.

1A tree is non-projective if the sequence of words visited in
a left-to-right, depth-first traversal of the sentence’s parse tree is
different than the actual word order of the sentence.

2These latter two issues are not problems for constituent
parses with binarized output and functional tags.

Though there are many syntactic parsers than can
reconstruct the grammatical structure of a text, there
are few, if any, accurate and widely accepted sys-
tems that also produce shallow semantic analysis of
the text. For example, a parser may indicate that,
in the case of ‘ice statue’, ‘ice’ modifies ‘statue’ but
will not indicate that ‘ice’ is the substance of the
statue. Similarly, a parser will indicate which words
a preposition connects but will not give any seman-
tic interpretation (e.g., ‘the boy with the pirate hat’
→ wearing or carrying, ‘wash with cold water’ →
means, ‘shave with the grain’ → in the same direc-
tion as). While, in some cases, it may be possible to
use the output from a separate system for this pur-
pose, doing so is often difficult in practice due to a
wide variety of complications, including program-
ming language differences, alternative data formats,
and, sometimes, other parsers.

3 Dependency Conversion

3.1 Relations and Structure

Most recent English dependency parsers produce
one of three sets of dependency types: unlabeled,
some variant of the coarse labels used by the
CoNLL dependency parsing shared-tasks (Buchholz
and Marsi, 2006; Nivre et al., 2007) (e.g., ADV,
NMOD, PMOD), or Stanford’s dependency labels
(de Marneffe and Manning, 2008). Unlabeled de-
pendencies are clearly too impoverished for many
tasks. Similarly, the coarse labels of the CoNLL
tasks are not very specific; for example, the same re-
lation, NMOD, is used for determiners, adjectives,
nouns, participle modifiers, relative clauses, etc. that
modify nouns. In contrast, the Stanford relations
provide a more reasonable level of granularity.

Our dependency relation scheme is similar to
Stanford’s basic scheme but has several differ-
ences. It introduces several new relations including
ccinit “initial coordinating conjunction”, cleft “cleft
clause”, combo “combined term”, extr “extraposed
element”, infmark “infinitive marker ‘to’ ”, objcomp
“object complement”, postloc “post-modifying lo-
cation”, sccomp “clausal complement of ‘so’ ”, vch
“verbal chain” and whadvmod “wh- adverbial mod-
ifier”. The nsubjpass, csubjpass, and auxpass rela-
tions of Stanford’s are left out because adding them
up front makes learning more difficult and the fact

1258

abbrev abbreviation csubjpass clausal subject (passive) pobj prepositional object
acomp adjectival complement det determiner poss possessive
advcl adverbial clause dobj direct object possessive possessive marker
advmod adverbial modifier extr extraposed element postloc post-modifying location
agent ‘by’ agent expl ‘there’ expletive preconj pre conjunct
amod adjectival modifier infmark infinitive marker (‘to’) predet predeterminer
appos appositive infmod infinite modifier prep preposition
attr attributive iobj indirect object prt particle
aux auxillary mark subordinate clause marker punct punctuation
auxpass auxillary (passive) measure measure modifier purpcl purpose clause
cleft cleft clause neg negative quantmod quantifier modifier
cc coordination nn noun compound rcmod relative clause
ccinit initial CC nsubj nominal subject rel relative
ccomp clausal complement nsubjpass nominal subject (passive) sccomp clausal complement of ‘so’
combo combination term num numeric modifier tmod temporal modifier
compl complementizer number compound number vch verbal chain
conj conjunction objcomp object complement whadvmod wh- adverbial
cop copula complement parataxis parataxis xcomp clausal complement w/o subj
csubj clausal subject partmod participle modifier

Table 1: Dependency scheme with differences versus basic Stanford dependencies highlighted. Bold indicates the
relation does not exist in the Stanford scheme. Italics indicate the relation appears in Stanford’s scheme but not ours.

that a nsubj, csubj, or aux is passive can easily be de-
termined from the final tree. Stanford’s aux depen-
dencies are replaced using verbal chain (vch) links;
conversion of these to Stanford-style aux dependen-
cies is also trivial as a post-processing step.3 The attr
dependency is excluded because it is redundant with
the cop relation due to different handling of copula,
and the dependency scheme does not have an abbrev
label because this information is not provided by the
Penn Treebank. The dependency scheme with dif-
ferences with Stanford highlighted is presented in
Table 1.

In addition to using a slightly different set of de-
pendency names, a handful of relations, notably cop,
conj, and cc, are treated in a different manner. These
differences are illustrated by Figure 1. The Stan-
ford scheme’s treatment of copula may be one rea-
son why dependency parsers have trouble learning
and applying it. Normally, the head of the clause
is a verb, but, under Stanford’s scheme, if the verb
happens to be a copula, the complement of the cop-
ula (cop) is treated as the head of the clause instead.

3The parsing system includes an optional script that can con-
vert vch arcs into aux and auxpass and the subject relations into
csubjpass and nsubjpass.

Figure 1: Example comparing Stanford’s (top) handling
of copula and coordinating conjunctions with ours (bot-
tom).

3.2 Conversion Process

A three-step process is used to convert the Penn
Treebank (Marcus, et al., 1993) from constituent
parses into dependency trees labeled according to
the dependency scheme presented in the prior sec-
tion. The first step is to apply the noun phrase
structure patch created by Vadas and Curran (2007),
which adds structure to the otherwise flat noun
phrases (NPs) of the Penn Treebank (e.g., ‘(metal
soup pot cover)’ would become ‘(metal (soup pot)
cover)’). The second step is to apply a version
of Johansson and Nugues’ (2007) constituent-to-
dependency converter with some head-finding rule
modifications; these rules, with changes highlighted

1259

(WH)?NP|NX|NML|NAC FW|NML|NN* JJR $|# CD|FW QP JJ|NAC JJS PRP ADJP RB[SR] VBG|DT|WP
RB NP-ε S|SBAR|UCP|PP SINV|SBARQ|SQ UH VP|NP VB|VBP

ADJP|JJP NNS QP NN $|# JJ VBN VBG (AD|J)JP ADVP JJR NP|NML JJS DT FW RBR RBS SBAR RB
ADVP RB|RBR|JJ|JJR RBS FW ADVP TO CD IN NP|NML JJS NN
PRN S* VP NN*|NX|NML NP W* PP|IN ADJP|JJ ADVP RB NAC VP INTJ
QP $|# NNS NN CD JJ RB DT NCD QP IN CC JJR JJS
SBARQ SQ S SBARQ SINV FRAG
SQ VBZ VBD VBP VB MD *-PRD SQ VP FRAG X
UCP [QNVP]P|S*|UCP|NML|PR[NT]|RRC|NX|NAC|FRAG|INTJ|AD[JV]P|LST|WH*|X
VP VBD|AUX VBN MD VBZ VB VBG VBP VP POS *-PRD ADJP JJ NN NNS NP|NML
WHADJP CC JJ WRB ADJP
WHADVP CC WRB|RB
X [QNVP]P|S*|UCP|NML|PR[NT]|RRC|NX|NAC|FRAG|INTJ|AD[JV]P|LST|WH*|X|CONJP
LST LS : DT|NN|SYM

Figure 2: Modified head-finding rules. Underline indicates that the search is performed in a left-to-right fashion instead
of the default right-to-left order. NML and JJP are both products of Vadas and Curran’s (2007) patch. Bold indicates
an added or moved element; for the original rules, see the paper by Johansson and Nugues (2007).

in bold, are provided in Figure 2. Finally, an addi-
tional script makes additional changes and converts
the intermediate output into the dependency scheme.

This dependency conversion has several advan-
tages to it. Using the modified head-finding rules for
Johansson and Nugues’ (2007) converter results in
fewer buggy trees than were present in the CoNLL
shared tasks, including fewer trees in which words
are headed by punctuation marks. For sections 2–
21, there are far fewer generic dep/DEP relations
(2,765) than with the Stanford conversion (34,134)
or the CoNLL 2008 shared task conversion (23,811).
Also, the additional conversion script contains vari-
ous rules for correcting part-of-speech (POS) errors
using the syntactic structure as well as additional
rules for some specific word forms, mostly common
words with inconsistent taggings. Many of these
changes cover part-of-speech problems discussed by
Manning (2011), including VBD/VBN, VBZ/NNS,
NNP/NNPS, and IN/WDT/DT issues. In total, the
script changes over 9,500 part-of-speech tags, with
the most common change being to change preposi-
tion tags (IN) into adverb tags (RB) for cases where
there is no prepositional complement/object. The
top fifteen of these changes are presented in Table
2. The conversion script contains a variety of ad-
ditional rules for modifying the parse structure and
fixing erroneous trees as well, including cases where
one or more POS tags were incorrect and, as such,
the initial dependency parse was flawed. Quick
manual inspections of the changes suggested that the

vast majority are accurate.
In the final output from the conversion, the num-

ber of sentences with one or more words dependent
on non-projective arcs in sections 2–21 is 3,245—
about 8.1% of the dataset. About 1.3% of this, or
556 of sentences, is due to the secondary conver-
sion script, with sentences containing approximate
currency amounts (e.g., about $ 10) comprising the
bulk of difference. For these, the quantifying text
(e.g., about, over, nearly), is linked to the number
following the currency symbol instead of to the cur-
rency symbol as it was in the CoNLL 2008 task.

Original New # of changes
IN RB 1128
JJ NN 787

VBD VBN 601
RB IN 462

VBN VBD 441
NN JJ 409

NNPS NNP 405
IN WDT 388

VBG NN 223
DT IN 220
RB JJ 214
VB VBP 184
NN NNS 169
RB NN 157

NNS VBZ 148

Table 2: Top 15 part-of-speech tag changes performed by
the conversion script.

1260

4 Parser

4.1 Algorithm

The parsing approach is based upon the non-
directional easy-first algorithm recently presented
by Goldberg and Elhadad (2010). Their original al-
gorithm behaves as follows. For a sentence of length
n, the algorithm performs a total of n steps. In each
step, one of the unattached tokens is added as a child
to one of its current neighbors and is then removed
from the list of unprocessed tokens. When only one
token remains unprocessed, it is designated as the
root. Provided that only a constant number of po-
tential attachments need to be re-evaluated after each
step, which is the case if one restricts the context for
feature generation to a constant number of neigh-
boring tokens, the algorithm can be implemented to
run in O(n log n). However, since only O(n) dot
products must be calculated by the parser and these
have a large constant associated with them, the run-
ning time will rival O(n) parsers for any reasonable
n, and, thus, a naive O(n2) implementation will be
nearly as fast as a priority queue implementation in
practice.4

The algorithm has a couple potential advantages
over standard shift-reduce style parsing algorithms.
The first advantage is that performing easy ac-
tions first may make the originally difficult deci-
sions easier. The second advantage is that perform-
ing parse actions in a more flexible order than left-
to-right/right-to-left shift-reduce parsing reduces the
chance of error propagation.

Unfortunately, the original algorithm does not
support non-projective trees. To extend the algo-
rithm to support non-projective trees, we introduce
move-right and move-left operations similar to the
stack-to-buffer swaps proposed by Nivre (2009) for
shift-reduce style parsing. Thus, instead of attaching
a token to one of its neighbors at each step, the algo-
rithm may instead decide to move a token past one
of its neighbors. Provided that no node is allowed
to be moved past a token in such a way that a previ-
ous move operation is undone, there can be at most
O(n2) moves and the overall worst-case complexity
becomes O(n2 log n). While theoretically slower,
this has a limited impact upon actual parsing times

4See Goldberg and Elhadad (2010) for more explanation.

in practice, especially for languages with relatively
fixed word order such as English.5 Though Gold-
berg and Elhadad’s (2010) original implementation
only supports unlabeled dependencies, the algorithm
itself is in no way limited in this regard, and it is
simple enough to add labeled dependency support
by treating each dependency label as a specific type
of attach operation (e.g., attach_as_nsubj), which
is the method used by this implementation. Pseu-
docode for the non-directional easy-first algorithm
with non-projective support is given in Algorithm 1.

input : w1 ... wn, #the sentence
m, #the model
k, #the context width
actions, #the list of parse actions
φ, #the feature generator

output: tree #a collection of dependency arcs
words = copyOf(s);
stale = copyOf (s);
cache; #cache of action scores
while |words| > 1 do

for w ∈ stale do
for act ∈ actions do

cache[w,act] = score(act, φ(w,...),
m);

stale.remove(w);
best = argmax

a∈actions&valid(a),w∈words

cache[w, a]

if isMove(best) then
i =

words.index(getTokenToMove(best));
words.move (i, isMoveLeft(best) ? -1
: 1);

else
arc = createArc(best);
tree.add(arc);
i = words.index(getChild(arc));
words.remove(i);

for x ∈ -k,...,k do
stale.add(words.get(index+x));

return tree

Algorithm 1: Modified version of Goldberg and
Elhadad’s (2010) Easy-First Algorithm with non-
projective support.

5See Nivre (2009) for more information on the effect of re-
ordering operations on parse time.

1261

4.2 Features

One of the key aspects of the parser is the complex
set of features used. The feature set is based off
the features used by Goldberg and Elhadad (2010)
but has a significant number of extensions. Various
feature templates are specifically designed to pro-
duce features that help with several syntactic issues
including preposition attachment, coordination, ad-
verbial clauses, clausal complements, and relative
clauses. Unfortunately, there is insufficient space in
this paper to describe them all here. However, a list
of feature templates will be provided with the parser
download.

Several of the feature templates use unsupervised
word clusters created with the Brown et al. (1992)
hierarchical clustering algorithm. The use of this al-
gorithm was inspired by Koo et al. (2008), who used
the top branches of the cluster hierarchy as features.
However, unlike Koo et al.’s (2008) parser, the fine-
grained cluster identifiers are used instead of just
the top 4-6 branches of the cluster hierarchy. The
175 word clusters utilized by the parser were created
from the New York Times corpus (Sandhaus, 2008).
Some examples from the clusters are presented in
Figure 3. The ideal number of such clusters was not
thoroughly investigated.

while where when although despite unless unlike ...
why what whom whatever whoever whomever whence ...
based died involved runs ended lived charged born ...
them him me us himself themselves herself myself ...
really just almost nearly simply quite fully virtually ...
know think thought feel believe knew felt hope mean ...
into through on onto atop astride Saturday/Early thru ...
Ms. Mr. Dr. Mrs. Judge Miss Professor Officer Colonel ...
John President David J. St. Robert Michael James George ...
wife own husband brother sister grandfather beloved ...
often now once recently sometimes clearly apparently ...
everyone it everybody somebody anybody nobody hers ...
around over under among near behind outside across ...
Clinton Bush Johnson Smith Brown Williams King ...
children companies women people men things students ...

Figure 3: High frequency examples from 15 of the Brown
clusters.

4.3 Training

The parsing model is trained using a variant of the
structured perceptron training algorithm used in the
original Goldberg and Elhadad (2010) implementa-

tion. The general idea of the algorithm is to iterate
over the sentences and, whenever the model predicts
an incorrect action, update the model weights. Fol-
lowing Goldberg and Elhadad, parameter averaging
is used to reduce overfitting.

Our implementation varies slightly from that of
Goldberg and Elhadad (2010). The difference is
that, at any particular step for a given sentence, the
algorithm continues to update the weight vector as
long as any invalid action is scored higher than any
valid action, not just the highest scoring valid ac-
tion; unfortunately, this change significantly slowed
down the training process. In early experiments, this
change produced a slight improvement in accuracy
though it also slowed training significantly. In later
experiments using additional feature templates, this
change ceased to have any notable impact on the
overall accuracy, but it was kept anyway. 6

The oracle used to determine whether a move op-
eration should be considered legal during the train-
ing phase is similar to Nivre et al.’s (2009) improved
oracle based upon maximal projective subcompo-
nents. As an additional restriction, during training,
move actions were only considered valid either if no
other action was valid or if the token to be moved
already had all its children attached and moving it
caused it to be adjacent to its parent. This fits with
Nivre et al.’s (2009) intuition that it is best to delay
word reordering as long as possible.

4.4 Speed Enhancements

To enhance the speed for practical use, the parser
uses constraints based upon the part-of-speech tags
of the adjacent word pairs to eliminate invalid de-
pendencies from even being evaluated. A rela-
tion is only considered between a pair of words if
such a relation was observed in the training data
between a pair of words with the same parts-of-
speech (with the exception of the generic dep de-
pendency, which is permitted between any POS tag
pair). Early experiments utilizing similar constraints
showed an improvement in parsing speed of about
16% with no significant impact on accuracy, regard-
less of whether the constraints were enforced during
training.

6See Goldberg and Elhadad (2010) for more description of
the general training procedure.

1262

System Arc Accuracy Perfect Sentences Non-Proj Arcs
Labeled Unlabeled Labeled Unlabeled Labeled Unlabeled

THIS WORK 92.1 (93.3) 93.7 (94.3) 38.4 (42.5) 46.2 (48.5) 66.5 (69.7) 69.3 (71.7)
THIS WORKno clusters 91.8 (93.1) 93.4 (94.1) 38.2 (42.3) 45.5 (47.3) 67.3 (70.9) 69.3 (72.5)
THIS WORKmoves disabled 91.7 (92.9) 93.3 (93.9) 37.1 (40.8) 44.2 (46.2) 21.1 (21.1) 22.7 (21.9)
NON-DIR EASY FIRST * 91.2 (92.0) * 37.8 (39.4) * 15.1 (16.3)
EISNER†MST 90.9 (92.2) 92.8 (93.5) 32.1 (35.6) 40.6 (42.3) 62.5 (65.3) 63.7 (66.9)
CHU-LIU-EDMONDSMST 90.0 (91.2) 91.8 (92.5) 28.4 (31.3) 35.0 (36.4) 62.9 (65.3) 64.1 (66.5)
ARC-EAGERMalt 89.8 (91.1) 91.3 (92.1) 31.6 (34.2) 37.4 (38.5) 19.5 (19.5) 20.3 (19.9)
ARC-STANDARDMalt 88.3 (89.5) 89.7 (90.4) 31.4 (34.1) 36.1 (37.3) 13.1 (12.0) 13.9 (12.7)
STACK-EAGERMalt 90.0 (91.2) 91.5 (92.3) 34.5 (37.5) 40.4 (41.9) 51.8 (53.8) 53.8 (55.4)
STACK-LAZYMalt 90.4 (91.7) 91.9 (92.8) 34.8 (37.7) 40.6 (42.5) 61.8 (63.3) 63.3 (65.3)

CHARNIAK‡ * 93.2 * 43.5 * 32.3
BERKELEY‡ * 93.3 * 43.6 * 34.3

Table 3: Parsing results for section 23 of the Penn Treebank (punctuation excluded). Results in parentheses were
produced using gold POS tags. †Eisner (1996) algorithm with non-projective rewriting and second order features.
‡Results not directly comparable; see text. ∗Labeled dependencies not available/comparable.

4.5 Evaluation

The following split of the Penn Treebank (Marcus,
et al., 1993) was used for the experiments: sections
2–21 for training, 22 for development, and 23 for
testing.

For part-of-speech (POS) tagging, we used an in-
house SVM-based POS tagger modeled after the
work of Giménez and Márquez (2004) 7. The train-
ing data was tagged in a 10-fold fashion; each fold
was tagged using a tagger trained from the nine re-
maining folds. The development and test sections
were tagged by an instance of the tagger trained us-
ing the entire training set. The full details of the
POS tagger are outside the scope of this paper; it is
included with the parser download.

The final parser was trained for 31 iterations,
which is the point at which its performance on the
development set peaked. One test run was per-
formed with non-projectivity support disabled in or-
der to get some idea of the impact of the move opera-
tions on the parser’s overall performance; also, since
the parsers used for comparison had no access to the
unsupervised word clusters, an additional instance
of the parser was trained with every word treated
as belonging to the same cluster so as to facilitate
a more fair comparison.

Seven different dependency parsing models were

797.42% accuracy on traditional POS evaluation (Penn Tree-
bank WSJ sections 22-24).

trained for comparison using the following open
source parsing packages: Goldberg and Elhadad’s
(2010)’s non-directional easy-first parser, MALT-
PARSER (Nivre et al., 2006), and MSTPARSER

(McDonald and Pereira, 2006)8. The model trained
using Goldberg and Elhadad’s (2010) easy-first
parser serves as something of a baseline. The
four MALTPARSER parsing models used the arc-
eager, arc-standard, stack-eager, and stack-lazy al-
gorithms. One of the MSTPARSER models used
the Chu-Liu-Edmonds maximum spanning tree ap-
proach, and the other used the Eisner (1996) al-
gorithm with second order features and a non-
projective rewriting post-processing step.

Unfortunately, it is not possible to directly com-
pare the parser’s accuracy with most popular con-
stituent parsers such as the Charniak (2000) and
Berkeley (Petrov et al., 2006; Petrov and Klein,
2007) parsers9 both because they do not pro-
duce functional tags for subjects, direct objects,
etc., which are required for the final script of the
constituent-to-dependency conversion routine, and
because they determine part-of-speech tags in con-
junction with the parsing. However, it is possible to
compute approximate unlabeled accuracy scores by
training the constituent parsers on the NP-patched
(Vadas and Curran, 2007) version of the data and
then running the test output through just the first
conversion script—that is, the modified version of
Johansson and Nugues’ (2007) converter.

1263

The results of the experiment are given in Ta-
ble 3, including accuracy for individual arcs, non-
projective arcs only, and full sentence match. Punc-
tuation is excluded in all the result computations. To
determine whether an arc is non-projective, the fol-
lowing heuristic was used. Traverse the sentence in
a depth-first search, starting from the imaginary root
node and pursuing child arcs in order of increasing
absolute distance from their parent. Whenever an
arc being traversed is found to cross a previously tra-
versed arc, mark it as non-projective and continue.
To evaluate the impact of part-of-speech tagging er-
ror, results for parsing using the gold standard part-
of-speech tags are also included.

We also measured the speed of the parser on the
various sentences in the test collection. For reason-
able sentence lengths, the parser scales quite well.
The scatterplot depicting the relation between sen-
tence length and parsing time is presented in Figure
5.

Figure 4: Parse times for Penn Treebank section 23 for
the parsers on a PC with a 2.4Ghz Q6600 processor and
8GB RAM. MALTPARSER ran substantially slower than
the others, perhaps due to its use of polynomial kernels,
and isn’t shown. (C-L-E - Chu-Liu-Edmonds, G&E -
Goldberg and Elhadad (2010)).

4.5.1 Results Discussion
The parser achieves 92.1% labeled and 93.7% un-

labeled accuracy on the evaluation, a solid result and
about 2.5% higher than the original easy-first imple-
mentation of Goldberg and Elhadad (2010). Further-
more, the parser processed the entire test section in

8Versions 1.4.1, 0.4.3b, and 0.2, respectively
9Versions 1.1 and 05Aug16, respectively

just over 30 seconds—a rate of over 75 sentences per
second, substantially faster than most of the other
parsers.

Not surprisingly, the results for non-projective
arcs are substantially lower than the results for all
arcs, and the systems that are designed to handle
them outperformed the strictly projective parsers in
this regard.

The negative effect of part-of-speech tagging er-
ror appears to impact the different parsers about the
same amount, with a loss of .6% to .8% in unlabeled
accuracy and 1.1% to 1.3% in labeled accuracy.

The 93.2% and 93.3% accuracy scores achieved
by the Charniak and Berkeley parsers are not too
different from the 93.7% result, but, of course, it is
important to remember that these scores are not di-
rectly comparable.

Figure 5: Sentence length versus parse time. Median
times for five runs over section 23.

5 Shallow Semantic Annotation

To create a more informative parse, the parser in-
cludes four optional modules, a preposition sense
disambiguation (PSD) system, a work-in-progress
’s-possessive interpretation system, a noun com-
pound interpretation system, and a PropBank-based
semantic role labeling system10. Taken together,
these integrated modules enable the parsing sys-
tem to produce substantially more informative out-
put than a traditional parser.

Preposition Sense Disambiguation The PSD
system is a newer version of the system described

10Lack of space prohibits a sufficiently thorough discussion
of these individual components and their evaluations, but addi-
tional information will be available with the system download.

1264

by Tratz and Hovy (2009) and Hovy et al. (2010); it
achieves 85.7% accuracy on the SemEval-2007 fine-
grain PSD task (Litkowski and Hargraves, 2007),
which is a statistically significant (p<=0.05; upper-
tailed z test) increase over the previous best reported
result for this dataset, Hovy et al.’s (2010) 84.8%.

Noun Compound Interpretation The noun com-
pound interpretation system is a newer version of
the system described by Tratz and Hovy (2010) with
similar accuracy (79.6% vs 79.3% using 10-fold
cross-validation11).

Possessives Interpretation The possessive inter-
pretation system assigns interpretations to ’s pos-
sessives (e.g., John’s arm → PART-OF, Mowgli’s
capture → PATIENT/THEME). The current system
achieves over 85.0% accuracy, but it is important to
note that the annotation scheme, automatic classifier,
and dataset are all still under active development.

PropBank SRL The PropBank-based semantic
role labeling system achieves 86.8 combined F1

measure for automatically-generated parse trees cal-
culated over both predicate disambiguation and ar-
gument/adjunct classification (89.5 F1 on predicate
disambiguation, 85.6 F1 on argument and adjuncts
corresponding to dependency links, and 86.8 F1);
this score is not directly comparable to any previ-
ous work due to some differences, including differ-
ences in both the parse tree conversion and the Prop-
Bank conversion. The most similar work is that of
the CoNLL shared task work (Surdeanu et al., 2008;
Hajič et al., 2009).

6 Related Work

Non-projectivity. There are two main approaches
used in recent NLP literature for handling non-
projectivity in parse trees. The first is to use an al-
gorithm, like the one presented in this paper, that
has inherent support for non-projective trees. Ex-
amples of this include the Chu-Liu-Edmonds’ ap-
proach for maximum spanning tree (MST) parsing
(McDonald et al., 2005) and Nivre’s (2009) swap-
based reordering method for shift-reduce parsing.
The second approach is to create an initial projec-
tive parse and then apply transformations to intro-

11These accuracy figures are higher than what should be ex-
pected for unseen datasets; see Tratz and Hovy (2010) for more
detail.

duce non-projectivity into it. Examples of this in-
clude McDonald and Pereira’s (2006) rewriting of
projective trees produced by the Eisner (1996) al-
gorithm, and Nivre and Nilsson’s (2005) pseudo-
projective approach that creates projective trees with
specially marked arcs that are later transformed into
non-projective dependencies.

Descriptive dependency labels. While most re-
cent dependency parsing research has used either
vague labels, such as those of the CoNLL shared
tasks, or no labels at all, some descriptive depen-
dency label schemes exist. By far the most promi-
nent of these is the Stanford typed dependency
scheme (de Marneffe and Manning, 2008). An-
other descriptive scheme that exists, but which is
less widely used in the NLP community, is the one
used by Tapanainen and Järvinen’s parser (1997).
Unfortunately, the Stanford dependency conversion
of the Penn Treebank has proven difficult to learn for
current dependency parsers (Cer et al., 2010), and
there is no publicly available dependency conversion
according to Tapanainen and Järvinen’s scheme.

Faster parsing. While the fastest reasonable
parsing algorithms are the O(n) shift-reduce algo-
rithms, such as Nivre’s (2003) algorithm and an ex-
pected linear time dynamic programming approach
presented by Huang and Sagae (2010), a few other
fast alternatives exist. Goldberg and Elhadad’s
(2010) easy-first algorithm is one such example. An-
other example, is Roark and Hollingshead’s (2009)
work that uses chart constraints to achieve linear
time complexity for constituency parsing.

Effective features for parsing. A variety of work
has investigated the use of more informative fea-
tures for parsing. This includes work that inte-
grates second and even third order features (McDon-
ald et al., 2006; Carreras, 2007; Koo and Collins,
2010). Also, some work has incorporated unsuper-
vised word clusters as features, including that of Koo
et al. (2008) and Suzuki et al. (2009), who utilized
unsupervised word clusters created using the Brown
et al. (1992) hierarchical clustering algorithm.

Semantically-enriched output. The 2008 and
2009 CoNLL shared tasks (Surdeanu et al., 2008;
Hajič et al., 2009), which required participants to
build systems capable of both syntactic parsing and
Semantic Role Labeling (SRL) (Gildea and Juraf-
sky, 2002), are the most notable attempts to encour-

1265

age the development of parsers with additional se-
mantic annotation. These tasks relied upon Prop-
Bank (2005) and NomBank (2004) for the seman-
tic roles. A variety of other systems have focused
on FrameNet-based (1998) SRL instead, including
those that participated in the SemEval-2007 Task 19
(Baker et al., 2007) and work by Das et al. (2010).

7 Conclusion

In this paper, we have described a new high-quality
dependency tree conversion of the Penn Treebank
(Marcus, et al., 1993) along with its labeled depen-
dency scheme and presented a parser that is fast, ac-
curate, supports non-projective trees and provides
rich output, including not only informative depen-
dency labels similar to Stanford’s but also additional
semantic annotation for prepositions, possessives,
and noun compound relations. We showed how the
easy-first algorithm of Goldberg and Elhadad (Gold-
berg and Elhadad, 2010) can be extended to support
non-projective trees by adding move actions similar
to Nivre’s (2009) swap-based reordering for shift-
reduce parsing and evaluated our parser on the stan-
dard test section of the Penn Treebank, comparing
with several other freely available parsers.

The Penn Treebank conversion process fixes a
number of buggy trees and part-of-speech tags and
produces dependency trees with a relatively small
percentage of generic dep dependencies. The ex-
perimental results show that dependency parsers can
generally produce Stanford-granularity labels with
high accuracy when using the new dependency con-
version of the Penn Treebank, something which, ac-
cording to the findings of Cer et al. (2010), does
not appear to be the case when training and testing
dependency parsers on the Stanford conversion.

The parser achieves high labeled and unlabeled
accuracy in the evaluation, 92.1% and 93.7%, re-
spectively. The 93.7% result represents a 2.5% in-
crease over the accuracy of Goldberg and Elhadad’s
(2010) implementation. Also, the parser proves to
be quite fast, processing section 23 of the Penn Tree-
bank in just over 30 seconds (a rate of over 75 sen-
tences per second).

The parsing system is capable of not only produc-
ing fine-grained dependency relations, but can also
produce shallow semantic annotations for preposi-

tions, possessives, and noun compounds by using
several optional integrated modules. The preposi-
tion sense disambiguation (PSD) module achieves
85.7% accuracy on the SemEval-2007 PSD task, ex-
ceeding the previous best published result of 84.8%
by a statistically significant margin, the possessives
module is over 85% accurate, the noun compound
interpretation module achieves 79.6% accuracy on
Tratz and Hovy’s (2010) dataset. The PropBank
SRL module achieves 89.5 F1 on predicate disam-
biguation and 85.6 F1 on argument and adjuncts cor-
responding to dependency links, for an overall F1 of
86.8. Combined with the core parser, these modules
allow the system to produce a substantially more in-
formative textual analysis than a standard parser.

8 Future Work

There are a variety of ways to extend and improve
upon this work. We would like to change our han-
dling of coordinating conjunctions to treat the co-
ordinating conjunction as the head because this has
fewer ambiguities than the current approach and also
add the ability to produce traces for WH- words. It
would also be interesting to examine the impact on
final parsing accuracy of the various differences be-
tween our dependency conversion and Stanford’s.

To aid future NLP research work, the code,
including the treebank converter, part-of-speech
tagger, parser, and semantic annotation add-ons,
will be made publicly available for download via
http://www.isi.edu.

Acknowledgements

We would like to thank Richard Johansson for
providing us with the code for the pennconverter
consituent-to-dependency converter. We would also
like to thank Dirk Hovy and Anselmo Peñas for
many valuable dicussions and suggestions.

References

Collin Baker, and Michael Ellsworth and Katrin Erk.
2007. SemEval’07 task 19: Frame Semantic Structure
Extraction. In Proc. of the 4th International Workshop
on Semantic Evaluations

Collin Baker, Charles J. Fillmore and John B. Lowe.
1998. The Berkeley FrameNet Project. In Proc. of the

1266

17th international conference on Computational lin-
guistics

Adam L. Berger, Vincent J. Della Pietra, and Stephen A.
Della Pietra. 1996. A maximum entropy approach to
natural language processing. In Computational Lin-
guistics 22(1):39–71

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
Based n-gram Models of Natural Language. Compu-
tational Linguistics 18(4):467–479.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proc. of CoNLL 2006.

Xavier Carreras. 2007. Experiments with a Higher-
Order Projective Dependency Parser. In Proc. of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007.

Daniel Cer, Marie-Catherine de Marneffe, Daniel Juraf-
sky, and Christopher D. Manning. 2010. Parsing to
Stanford Dependencies: Trade-offs between speed and
accuracy. In Proc. of LREC 2010.

Eugene Charniak. 2000. A Maximum-Entropy-Inspired
Parser. In Proc. of NAACL 2000.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
find-grained n-best parsing and discriminative rerank-
ing. In Proc. of ACL 2005.

Michael A. Covington. 2001. A Fundamental Algorithm
for Dependency Parsing. In Proc. of the 39th Annual
ACM Southeast Conference.

Dipanjan Das, Nathan Schneider, Desai Chen, and Noah
A. Smith. 2010. Probabilistic Frame-Semantic Pars-
ing. In Proc. of HLT-NAACL 2010.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies repre-
sentation. In COLING Workshop on Cross-framework
and Cross-domain Parser Evaluation.

Jason Eisner. 1996. Three New Probabilistic Models
for Dependency Parsing: An Exploration. In Proc. of
COLING 1996.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. MIT Press.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles. Computational Linguistics.
28(3):245–288.

Jesús Giménez and Lluís Márquez 2004. SVMTool: A
General POS Tagger Generator Based on Support Vec-
tor Machines. In Proc. of LREC 2004.

Yoav Goldberg and Michael Elhadad. 2010. An Ef-
ficient Algorithm for Easy-First Non-Directional De-
pendency Parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the ACL.

Yoav Goldberg and Michael Elhadad. 2009. The
CoNLL-2009 Shared Task: Syntactic and Semantic
Dependencies in Multiple Languages. In Proc. of
the Thirteenth Conference on Computational Natural
Language Learning: Shared Task.

Dirk Hovy, Stephen Tratz, and Eduard Hovy. 2010.
What’s in a Preposition?—Dimensions of Sense Dis-
ambiguation for an Interesting Word Class. In Proc. of
COLING 2010.

Liang Huang and Kenji Sagae. 2010. Dynamic Program-
ming for Linear-Time Shift-Reduce Parsing. In Proc.
of ACL 2010.

Richard Johansson and Pierre Nugues. 2007. Extended
constituent-to-dependency conversion for english. In
Proc. of NODALIDA.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple Semi-supervised Dependency Parsing. In
Proc. of ACL 2008.

Terry Koo and Michael Collins. 2010. Efficient Third-
order Dependency Parsers. In Proc. of ACL 2010.

Ken Litkowski and Orin Hargraves. 2007. SemEval-
2007 Task 06: Word-Sense Disambiguation of Prepo-
sitions. In Proc. of the 4th International Workshop on
Semantic Evaluations.

Christopher D. Manning. 2011. Part-of-Speech Tagging
from 97% to 100%: Is It Time for Some Linguistics?
In Proc. of the 12th International Conference on Intel-
ligent Text Processing and Computational Linguistics
(CICLing 2011).

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: the Penn TreeBank. Computational
Linguistics, 19(2):313–330.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-Projective Dependency Parsing
Using Spanning Tree Algorithms. In Proc. of HLT-
EMNLP 2005.

Ryan McDonald and Fernando Pereira. 2006. Online
Learning of Approximate Dependency Parsing Algo-
rithms. In Proc. of EACL 2006.

Adam Meyers, Ruth Reeves, Catherine Macleod, Rachel
Szekely, Veronika Zielinska, Brian Young and Ralph
Grishman. 2004. The NomBank Project: An Interim
Report. In Proc. of the NAACL/HLT Workshop on
Frontiers in Corpus Annotation.

Joakim Nivre. 2009. Non-Projective Dependency Pars-
ing in Expected Linear Time. In Proc. of the 47th An-
nual Meeting of the ACL and the 4th IJCNLP of the
AFNLP.

Joakim Nivre. 2003. An Efficient Algorithm for Projec-
tive Dependency Parsing. In Proc. of the 8th Interna-
tional Workshop on Parsing Technologies (IWPT).

Joakim Nivre, Marco Kuhlmann, and Johan Hall. 2009.
An Improved Oracle for Dependency Parsing with On-
line Reordering. In Proc. of the 11th International
Conference on Parsing Technologies (IWPT).

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007. The CoNLL 2007 shared task on dependency
parsing. In Proc. of EMNLP-CoNLL 2007.

1267

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Malt-
Parser: A Data-Driven Parser-Generator for Depen-
dency Parsing. In Proc. of LREC 2006.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective
dependency parsing. In Proc. of ACL-2005.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles. In Computational Linguistics.
31(1):71–106.

Slav Petrov and Dan Klein. 2007. Improved Inference
for Unlexicalized Parsing. In Proc. of HLT-NAACL
2007.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and in-
terpretable tree annotation. In Proc. of COLING-ACL
2006.

Brian Roark and Kristy Hollingshead. 2009. Linear
complexity context-free parsing pipelines via chart
constraints. In Proc. of HLT-NAACL.

Evan Sandhaus. 2008. The New York Times Annotated
Corpus. Linguistic Data Consortium, Philadelphia.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluís Màrquez, and Joakim Nivre. 2008. The CoNLL-
2008 shared task on joint parsing of syntactic and se-
mantic dependencies. In Proc. of the Twelfth Confer-
ence on Computational Natural Language Learning.

Jun Suzuki, Hideki Isozaki, Xavier Carrerras, and
Michael Collins. 2009. An Empirical Study of Semi-
supervised Structured Conditional Models for Depen-
dency Parsing. In Proc. of EMNLP.

Pasi Tapanainen and Timo Järvinen. 1997. A non-
projective dependency parser. In Proc. of the fifth con-
ference on applied natural language processing.

Stephen Tratz and Dirk Hovy. 2009. Disambiguation of
Preposition Sense using Linguistically Motivated Fea-
tures. In Proc. of Human Language Technologies: The
2009 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
Companion Volume: Student Research Workshop and
Doctoral Consortium.

Stephen Tratz and Eduard Hovy. 2010. A Taxonomy,
Dataset, and Classifier for Automatic Noun Com-
pound Interpretation. In Proc. of ACL 2010.

David Vadas and James R. Curran. 2007. Adding Noun
Phrase Structure to the Penn Treebank. In Proc. of
ACL 2007.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical Dependency Analysis With Support Vector Ma-
chines. In Proc. of 8th International Workshop on
Parsing Technologies (IWPT).

1268

