
Use of Metadata for Question Answering and Novelty Tasks

Kenneth C. Litkowski
CL Research

9208 Gue Road
Damascus, MD 20872

ken@clres.com

Abstract

CL Research’s question-answering system for TREC 2003 was modified away from reliance on database
technology to the core underlying technology of using massive XML-tagging for processing both questions and
documents. This core technology was then extended to participate in the novelty task. This technology provides
many opportuinities for experimenting with various approaches to question answering and novelty determination.

For the QA track, we submitted one run and our overall main task score was 0.075, with scores of 0.070
for factoid questions, 0.000 for list questions, and 0.160 for definition questions. For the passage task, we
submitted two runs, our better score was 0.119 for the factoid questions. These scores were all considerably below
the medians for these tasks. We have implemented further routines since our official submission, improving our
scores to 0.18 and 0.23 for the exact answer and passages tasks, respectively. For the Novelty track, we submitted
four runs for task 1, one run for task 2, five runs for task 3, and one run for task 4; our submissions for tasks 2 and
4 were identical. For task 1, our best run received an F-score of 0.483 for relevant sentences and 0.410 for new
sentences. For task 2, our F-score was 0.788 for new sentences. For task 3, our best F-score was 0.558 for relevant
sentences and 0.419 for new sentences. For task 4, our F-score was 0.655 for new sentences. On average, our F-
scores were somewhat above the medians on all tasks. We describe our system and examine our results from the
perspective of exploiting the metadata in the XML tags.

1 Introduction

In TREC 2002, CL Research examined the
potential of using XML-tagged documents for question
answering (Litkowski, 2003a). In particular, we saw
how the use of hand-developed XPath expressions
could obtain extremely good results when compared
with the best sytems. However, as noted, the challenge
was the automatic creation of XPath expressions.
While this was the focus of our participation in the
TREC 2003 questions answering (QA) track, this
effort was performed in the context of creating a new
Knowledge Management System (KMS) from the GUI
interface we used in last year’s explorations. KMS was
first used in CL Research’s participation in text
summarization in the 2003 Document Understanding
Conference (Litkowski, 2003b). KMS is continuing to
evolve as we explore the possibilities of using XML-
tagging to perform various natural language
processing (NLP) tasks.

Extensible Markup Language (XML) provides a
natural mechanism for representing texts, from small
snippets like titles through extensive collections of
texts. A valid XML document is a tree and we can
readily design our entire representation on this tree
structure. We can create XML representations for

questions, topic descriptions (such as used in the
Novelty task), individual documents, and collections of
documents. Generally, the representations create nodes
for sentences, clauses, phrases, and words. Each node
in the tree will generally have associated attribute
names and values. A major challenge is determining
an appropriate set of metadata (tags, attributes, and
values) for different NLP tasks. This paper describes
some of our findings emerging from CL Research’s
participation in TREC.

A key part of the XML design philosophy is the
ability to transform an XML file into usable output for
display or other purposes (e.g., populating a database).
This is accomplished via XML stylesheet language
transformations (XSLT). XSLT is based on the
creation of XPath expressions, which specify the path
from the top of the XML tree to some intermediate or
leaf node. XPath expressions are useful in QA, since
they provide a simple mechanism for homing in on
answers. Just as important, we have found it essential
to be able to move about in the XML tree from a
particular node, based on relations of one node to
others (e.g., moving to a clause containing a noun
phrase).

Section 2 presents the TREC QA and Novelty
problem descriptions. Section 3 describes the KMS,

specifically components for processing texts and for
performing particular NLP tasks. Section 4 provides
our question answering results, particularly our
experience in handling different types of questions.
Section 5 describes our novelty experiments,
particularly identifying insights about the nature of the
task as they emerged. Section 6 describes anticipated
next steps for improving the question-answering
capability and for using XML-tagged documents in
other applications such as information extraction, text
summarization, novelty studies, and investigation of
linguistic phenomena.

2 Problem Description

The TREC 2003 QA and Novelty tasks used the
AQUAINT Corpus of English News Text on two CD-
ROMs, (about one million documents), containing
documents from Associated Press Newswire, New York
Times Newswire, and Xinhua News Agency. These
documents were stored with SGML formatting tags
(XML compliant).

For the QA track, participants were provided with
500 unseen questions to be answered in a “main” task
from the corpus. Participants were given the option of
using their own search engine or of using the results of
a “generic” search engine. CL Research chose the
latter, relying on the top 50 documents retrieved by the
search engine. These top documents were provided
simultaneously with the questions. The 500 questions
included a type: factoid (417, requiring a short, exact
answer), list (37, requiring a list of answers), and
definition (50, requiring a set of core elements and/or
acceptable peripheral information concerning the term
to be defined). An additional task, using only the 413
factoid questions, was to submit “passages” containing
the answer.

Participants in the main task were required to
answer the 413 factoid questions with a single exact
answer, containing no extraneous information and
supported by a document in the corpus. A valid answer
could be NIL, indicating that there was no answer in
the document set; NIST included 30 questions for
which no answer exists in the collection. For these
questions, NIST evaluators next judged whether an
answer was correct, inexact, unsupported, or incorrect.
The submissions were then scored as percent of correct
answers. For the list questions, participants returned a
set of answers (e.g., a list of chewing gums);
submissions were given F-scores, measuring recall of
the possible set of answers and the precision of the
answers returned. For definitions questions (“Who is
Vlad the Impaler” or “What are fractals”), participants

provided a set of answers. These answer sets were also
scored with an F-score, measuring whether the answer
set contained certain “vital” information and how
efficiently peripheral information was captured (based
on answer lengths).

CL Research submitted one run for the main task
and two runs for the passages task.

For the Novelty track, participants were provided
with descriptions of 50 topics (labeled as “event” or
“opinion”) and a set of 25 documents relevant to each
topic. These documents were further broken down into
sentences. There were four tasks. For the first task,
participants were to identify sentences relevant to the
topic and then to identify which of these sentences
provided novel or new information. For task 2,
participants were given the relevant sentences from all
documents and asked to identify those which were
new. For task 3, participants were provided with the
relevant and new sentences from the first five
documents and asked to identify the relevant and new
sentences for the remaining 20 documents. For task 4,
participants were given the relevant sentences from all
documents and the new sentences from the first 5
documents and asked to identify the new sentences in
the last 20 documents. The tasks were spread out over
a three week period, with participants given additional
information at the end of the first week.

CL Research submitted four runs for task 1 (using
different amounts of information from the topic
description and with a different threshhold for judging
relevance), one run for task 2, five runs for task 3
(using different threshholds for taking into account
information in the identified relevant sentences), and
one run for task 4.

3 The Knowledge Management System

The CL Research KMS consists of two major
components, a tasking component and a text
processing component. The tasking component sets up
the tasks to be performed based on the NLP task (such
as question answering, text summarization, or novelty
detection). The text processing component processes
documents into an XML representation. For question
answering, the tasking component will parse and
process a question into an XML representation, invoke
the text processing component to handle any
documents that might contain the answers, and
answers the question. For novelty detection, the
tasking component will parse and process the title, the
description, and the narrative into an XML
representation, invoke the text processing component
for relevant documents, and then process the sentences

in the documents against the topic description to
identify relevant and novel sentences.

The text processing component consists of three
elements: (1) a sentence splitter that separates the
source documents into individual sentences; (2) a
parser which takes each sentence and parses it,
resulting in a parse tree containing the constituents of
the sentence; and (3) a parse tree analyzer that
identifies important discourse constituents (sentences
and clauses, discourse entities, verbs and prepositions)
and creates an XML-tagged version of the document.
The remainder of this section details these elements,
focusing on document processing; these same elements
are used in parsing and processing questions and topic
descriptions into XML representations.

3.1 Sentence Splitting

Sentence splitting proceeds as described in
previous years (Litkowski, 2002a; Litkowski,
2001).For TREC 2003, we were able to process the full
set of 50 documents for each question quite rapidly,
unlike previous years where we were more limited in
speed by the reliance on database technology, where
processing speed slowed exponentially as the database
grew. Instead, processing grew linearly with the size of
the document collection. Overall, we processed 25,000
documents from which 724,165 sentences were
identified and presented to the parser. Thus, we
processed an average of 29.0 sentences per document
(compared to 25.7 in TREC 2002, 22.8 in TREC-10,
28.9 in TREC-9 and 31.9 in TREC-8). Overall, we had
an average of 1448 sentences to consider for each
question. For the novelty task, only 1250 documents
were processed, at 25 documents for each of 50 topics.

Our sentence splitter has remained largely the
same, but some improvements have been made,
primarily in the recognition of abbreviations and
initials associated with a name. In previous years, this
had resulted in improper splitting. In TREC 2003, we
observed that the documents for the novelty task,
which were provided already split into “sentences”,
had many sentences improperly split. We rejoined
these sentences prior to processing these texts.

3.2 Parser

We continued our use of the Proximity parser,
described in more detail in our previous papers
(Litkowski, 2002a; Litkowski, 2001). As described
there, the parser output consists of bracketed parse
trees, with leaf nodes describing the part of speech and
lexical entry for each sentence word. Annotations, such

as number and tense information, may be included at
any node. Usable output was generated by the parser
for 99.9 percent of the sentences that were processed.

3.3 Sentence and Discourse Analysis

The sentence parsing in KMS is part of a broader
system designed to provide a discourse analysis of an
entire text. After each sentence is identified and
parsed, its parse tree is traversed in a depth-first
recursive function. During this traversal, each non-
terminal and terminal node is analyzed, making use of
parse tree annotations and other functions and lexical
resources that provide “semantic” interpretations of
syntactic properties and lexical information.

At the top node in the tree, just prior to iteration
over its immediate children, the principal discourse
analysis steps are performed. Each sentence is treated
as an “event” and added to a list of events that
constitute the discourse. We first update data structures
used for anaphora resolution. Next, we perform a quick
traversal of the parse tree to identify discourse markers
(e.g., subordinating conjunctions, relative clause
boundaries, and discourse punctuation) and break the
sentence down into elementary discourse units. We
also identify and maintain a list of the sentence’s verbs
at this stage, to serve as the bearers of the event for
each discourse unit.

After the initial discourse analysis, the focal points
in the traversal of the parse tree are the noun phrases.
When a noun phrase is encountered, its constituents
are examined and its relationship to other sentence
constituents are determined. Each noun phrase is
added to a list of discourse entities for the entire text,
that is, a “history” list. As each noun phrase is
encountered, it is compared to discourse entities
already on the history list. This comparison first looks
for a prior mention, in whole or in part, to determine
whether the new entity is a coreferent of a previous
entity (particularly valuable for named entities). If the
new entity is an anaphor, an anaphoric resolution
module is invoked to establish the antecedent. A
similar effort is made to find antecedents for definite
noun phrases. The noun phrase’s constituents are
examined for numbers, adjective sequences,
possessives (which are also subjected to the anaphoric
resolution module), genitive determiners (which are
made into separate discourse entities), leading noun
sequences, ordinals, and time phrases. Finally, an
attempt is made to assign a semantic type to the head
noun of the phrase using WordNet or an integrated
machine-readable dictionary or thesaurus.

If a noun phrase is part of a prepositional phrase,
a special preposition dictionary is invoked in an
attempt to disambiguate the preposition and identify its
semantic type. This module identifies the attachment
point of the preposition and uses information about the
syntactic and semantic characteristics of the
attachment point and the prepositional object for this
disambiguation. The preposition “definitions” in this
dictionary are actually function calls that check for
such things as literals and hypernymy relations in
WordNet. A list of all prepositions encountered in the
text is maintained as the text is processed. (See
Litkowski (2002b) for further details.)

Predicative adjective phrases, relative clauses,
subordinate clauses, and appositives are also flagged as
the parse tree is traversed. The attachment points and
spans of relative clauses and appositives are noted.

As indicated above, the text analysis module
develops four lists at the same time as the semantic
relation triples: (1) events (the discourse segments), (2)
entities (the discourse entities), (3) verbs, and (3)
semantic relations (the prepositions). Each document
consists of one or more tagged segments, which may
include nested segments. Each discourse entity, verb,
and preposition in each segment is then tagged. A
segment may also contain untagged text, such as
adverbs and punctuation. Each item on each list has an
identification number (used in many of the functions of
the text analysis module). As indicated above, the
discourse analysis assigns attributes to each segment
(and subsegment), discourse entity, verb, and
preposition.

For segments, the attributes include the sentence
number (if the segment is the full sentence), a list of
subsegments (if any), the parent segment (if a
subsegment), the text of the segment, the discourse
markers in the sentence, and a type (e.g., a “definition”
sentence or “appositive”). For discourse entities, the
attributes include its segment, position in the sentence,
syntactic role (subject, object, prepositional object),
syntactic characteristics (number, gender, and person),
type (anaphor, definite or indefinite), semantic type
(such as person, location, or organization), coreferent
(if it appeared earlier in the document), whether the
noun phrase includes a number or an ordinal,
antecedent (for definite noun phrases and anaphors),
and a tag indicating the type of question it may answer
(such as who, when, where, how many, and how
much). For verbs, the attributes include its segment,
position in the sentence, the subcategorization type
(from a set of 30 types), its arguments, its base form
(when inflected), and its grammatical role (when used
as an adjective). For prepositions, the attributes include
its segment, the type of semantic relation it instantiates

(based on disambiguation of the preposition) and its
arguments (both the prepositional object and the
attachment point of the prepositional phrase).

After all sentences in a document have been
processed, the four lists are used to create an XML-
tagged version of the document. The XML tagging is
performed for each segment within the XML element
segment, with the attributes listed in the tag opening.
The tag content is initialized to the segment text and
we proceed to mark up this text according to the text
contained within each subsegment, discourse entity
(discent), verb (verb), and preposition (semrel) in the
segment. As these XML elements are generated, their
attributes are added to the tag opening.

The resultant XML-tagged text for individual
documents were combined into one overall file of
documents, each with a tag for the document number.
For TREC, there was an XML file for each of the 500
questions in the QA track and for each of the 50 topics
in the novelty track. As of the submission date for the
QA track, XML tagging results in nearly a sevenfold
expansion of the documents. The 94 MBs of the top 50
documents generated 632 MBs of XML-tagged text.

The tagging process is in continual development.
Improvements arise in the first instance from detecting
bugs in the parser, extracting more information from
the parse results, and detecting bugs in the creation of
the lists for sentences, clauses, noun phrases, verbs,
and prepostions. In the second instance, improvements
arise from improved use of lexical resources for
characterizing the various elements. Finally,
improvements occur as the system is expanded to cover
more linguistic phenomena, particularly in
characterizing semantic relations between various
discourse elements.

4 Question-Answering Using XML-
Tagged Documents

As described for TREC 2002 (Litkowski, 2003a),
question-answering against the XML files essentially
involves describing a path (XPath) from the top of the
document tree (in this case, a file of 50 TREC
documents) to a discourse entity (in our case, to a
discent node) which is returned as the answer. In
TREC 2002, we demonstrated that the desired discent
nodes were present for almost all the questions, with
the residual few cases not present because of parsing or
processing bugs. Further, we showed that an XPath
expression could be developed by hand to extract these
answers to a degree better than the best performing
system. (This is slightly misleading since the measure
used in TREC 2002 was a confidence weighted score

that was higher than simply the percentage of correct
answers, as used in TREC 2003.) We concluded our
discussion last year by indicating that the challenge
was the automatic creation of XPath expressions.

As we proceeded into the development of the
functionality for XPath expression creation for TREC
2003, we found it necessary to situate the use of the
XPath expressions into a broader set of routines.
Generally, the overall architecture for answering
questions consists of four components: (1) question
analysis, (2) creating of a broad XPath expression that
will retrieve appropriate sentences, (3) appending to
this basic XPath expression a specific XPath
expression request for discourse entities (with routines
specific to question type), and (4) retrieving candidate
answers using the XPath expression and submitting
these answers to a post-processng routine (also
question-type specific) to evaluate the answers. We
have found that some looping through these
components may be necessary, based on results that are
obtained. For the most part, this involves revising the
specific XPath expression, but some looping may also
occur in evaluating answers when a pass through the
candidates results in a narrowing and subsequent
passes can examine the relative quality of different
answers.

The complexity of these processes was unexpected,
with the result that our implementation was incomplete
at the time of our submission. In particular, we were
unable to convert many of the details of our candidate
answer evaluations (which are question-type specific)
into appropriate processing steps making use of the
XPath and XML node processing capabilities. We have
since implemented many of these routines. Not
surprisingly, the complexity of the routines varies with
the question type. Several general principles have
emerged. Again, not surprisingly, the principles reflect
those developed for question answering in our previous
work and in the work of other TREC participants.
These prinicples are couched within a more general
architecture that implements linguistic and semantic
processing, rather than simply implementing pattern
recognition routines. Although we have not ahcieved
the performance of our hand generation of XPath
expressions, we are confident that continued
development of the XML mechanisms will serve not
only question answering, but also other NLP tasks.

We describe our observations to date in the
following areas: (1) the question analysis phase, (2) the
creation of the basic XPath expression to retrieve
sentences, (3) question-type specific XPath expression
creation ,and (4) evaluation of candidate answers.

4.1 Question Analysis

We have grounded our analysis of questions on a
rigorous hierarchical analysis of dictionary definitions
for question words, specifically for what, which, who,
when, where, why, and how. The definition for what
is at the top of the hierarchy, “asking for information
specifying something”, with which being a slight
variant, “asking for information specifying one or
more people or things from a definite set”. The others
are defined in terms using the what primitive: “what
person” (who), “at what time” (when), “at what
location” (where), “for what reason” (why), and “by
what means” (how). There are three additional
varieties of how: how much (“what amount or price”),
how many (“what number”), and how adj (“used to
ask about the degree or extent of something”).

Our question analysis identifies the type of
question, either directly according to the question word
or by analyzing the question string and the semantics
of key discourse entities in the question. Thus, “what
year” is converted into a when question, “what is the
length of np” is converted into a how adj question, and
“what country” is converted into a which question (or
equivalently, a whatNP question). Sentences that have
no question elements (which are given a “qelem”
attribute in the XML tagging), such as “List types of
chewing gum”, are converted into whatNP questions.
Very simple what or who questions “Who is Vlad the
Impaler?” are converted into whatIsDef or whoIsDef
questons.

4.2 Basic Sentence XPath Expression

Each sentence that is processed in KMS is
enclosed in the metadata tag segment. Clauses also
have this tag, but are distinguished from the full
sentence via attributes. A full sentence is assigned an
ID number and may have an associated list of
subsegments, while a clause has a parent. All questions
give rise to an XPath expression that selects sentences
and begin with

//segment[@sent].
This will retrieve all sentences in all documents in a
file.

We next add further restrictions on what sentences
we would like to examine in further detail based on the
elements of the XML representation of the question, in
particular the discourse entities. At this point, we want
to remain fairly generous in keeping sentences, so we
look for any sentences containing any of the words in
the discourse entities in the question, except for stop
words. For example, for question 1401 in TREC 2002,

“What is the democratic party symbol?”, the basic
XPath expression is

/ / s e g m e n t [@ s e n t a n d
(c o n t a i n s (. , ' d e m o c r a t i c ') o r
contains(.,’party’) or contains(‘symbol’))]

Identification of the words to be included in this part
of the XPath expression is somewhat involved, but
provides a first screen to identify sentences where an
answer might be found. When evaluating answers for
each question type, we determine whether changing
“or” or “and” retrieves any sentences, and allow this
most restrictive screen if it returns any sentences.

We are continuing to study alternatives to this
basic XPath expression, such as using regular
expressions, allowing query expansion using
synonyms, and weighting the importance of terms.

4.3 Question-Specific XPath Expressions

As indicated above, each question type has its own
specific processing to characterize the discourse entity
that is sought in the XPath expression. This generally
entails adding to the basic XPath expression a
specification for a discent, with the following
appended:

//discent
In all cases, the attributes of the desired discourse
entity are specified via qualifiers. Since we have
tagged discourse entities with many attributes during
text processing, we can make use of this metadata
when adding qualifiers.

For the more “complex” question types (when,
where, how much, how many, and how adj), the
specification qualifier for the discourse entity is
actually simpler, such as

//discent[@tag=’when’], or
//discent[@tag=’where’].

For a question like “How many time zones”, the
qualifier would add the head noun “time zones”

/ / d i s c e n t [@ t a g = ’ h o w ma n y ’ a nd
contains(.,’time zones’)]

to obtain a discourse entity that has a numeric
quantifier.

For the more “basic” question types, what,
whatNP, and who, analysis of the question is
necessary to identify appropriate qualifiers. For who
questions, the discourse entity would be required to
have a semtype attribute with a value of “person”.
When a question asks for the “first” or the “biggest”,
the qualifier would require that the discourse entity
have an ordMod (ordinal modifier) with the same
numerical value (ord) as required (e.g., “2" for second)

or a degMod (degree modifer) of the same level (e.g.,
“est” for superlative).

Many questions would give rise to qualifiers on
the discourse entity string, frequently asking that either
the entity itself or its antecedent (if a pronoun) contain
the key or focal noun in the question. This is done
frequently with what and who questions, where the
qualification will retrieve a discourse entity that is
essentially identical with what is being asked for,
rather than the discourse entity that is the answer. This
is done so that in the next (evaluation) step, we
examine the context surrounding such a key noun,
looking for appositives, verb subjects, or verb or
prepositional objects. (Frequently, In our official
submission, for example, in a question like “what
band”, our answer was the word “band”, because we
had not fully implemented our routines for examining
the context surrounding the focal noun.)

Another common qualifier on the discourse entity
was a specification of the context, where we would
look for a discourse entity in relation to a verb. For
example, in “Who sang the Tennessee Waltz” looking
for a discourse entity that had a synrole attribute of
“subj” and preceded the verb either equal to “sing” or
with a base attribute equal to “sing”.

In general, the development of these qualifiers is
quite tricky. There is a tradeoff between specifying the
characteristics of the actual discourse entity or
specifying sufficient qualifiers to obtain a reasonable
candidate set of discourse entities that can be
evaluated, as described in the next section.

4.4 Question-Specific Evaluation of
Candidate Answers

In general, the search query returned a
considerable number of candidate answers. We then
use question-specific routines to examine the context
for text elements that have a specific relation to each
candidate answer. (For all questions, as mentioned
above, we first determined whether we could convert
the “or” to “and” to retrieve sentences containing all
the terms in the search query to reduce the number of
candidates.)

For What and Who questions, the answer is
sought in discourse entities that stand in a copular or
appositive relationship to the candidate answers. The
candidate answer is first screened to make sure that it
does not contain a mismatch in degree or ordinal from
one that is specified in the question (e.g., “highest” or
“second”). An answer is first sought in a copular
relationship, and if not found, the candidate is
examined to determine whether it has a following

appositive. For example, “What is the national airline
of Spain?”, the discourse entity “Spain’s state airline”
is followed by “Iberia”. A similar set of tests is used in
answering WhatIsDef and WhoIsDef questions, with
the distinctions that these questions allow multiple
answers.

For WhoIsDef questions, documents in the
collection that were talking about a person with the
same last name but a different first name were
excluded from consideration. This was particularly
important when a candidate answer was an anaphor, so
it was important to establish that its antecedent was the
person in the question. For these questions, we also
looked for particular constructions, such as verb
phrases beginning with “won” or “discovered” or
prepostional phrases beginning with “of” (identifying
a person’s affiliation).

For WhatNP and List questions, the key noun
constitutes a hypernym and what is being sought is a
hyponym. We examine whether a candidate answer
node (i.e., a discourse entity) is itself a hyponym, i.e.,
a noun phrase such as “Labor Party” in answering the
question “What party led Australia from 1983 to
1996?”. This includes examining the head noun of a
phrase to determine, in WordNet, whether it is a
hyponym of the key noun in the question. Another test
examines other discourse entities in the same sentence
to determine if they have a hypernym that matches the
one required by the question (e.g., “Philadelphia” is a
city in answering the question “What city is the Liberty
Bell currently located in?”).

For basic How questions, the focus is on the verb
(e.g., “die”). The candidate answers are the verbs with
the base form (“die” from “died”). If the verbs don’t
appear in sentences containing other key words from
the question, an expanded set of synonyms is used
(e.g., “assassinate”, “murder”, “kill”, “shoot”). Then,
if the verb form is not one that lexicalizes “death” (a
derived form in WordNet), the sentence is examined
for semantic components (or frame elements) in
prepositional phrases that identify the cause of death
(e.g., “died of cancer”, “died in a plane crash”, “from
a ruptured abdominal aneurysm”). Other constraints in
the question are examined to ensure that the key noun
is the subject of the verb (e.g., making sure an anaphor
refers to “Marty Robbins” and not “Jerome Robbins”).

For when questions, the candidate answers were
retrieved simply by asking for discourse entities that
had the tag “when”. For questions that asked
specifically for a particular type of time (“what year”,
“what day”, or “what month”) (which had previously
been recategorized as When questions rather than
What questions), the candidate time entities were

scrutinized specifically to ensure they were of the
proper type. For these question, when the key noun
was a phrase (“Cold Mountain” or “International
Volunteers Day”), the sentence containing the
candidate answer was examined for the occurrence of
each word to give higher scores for those containing
more words in the phrase.

For Where questions, all candidate answers had
either a tag value of “where” or a semtype of
“location”. were those tagged as being of type “where”
or in which the key noun was contained in WordNet,
we tested whether a candidate answer was also present
in the WordNet definition. We also tested whether a
candidate answer had a hypernym in WordNet that
was equivalent to the type of geographic location that
was sought (e.g., in questions like “what city”).

For HowMany, HowMeas, and HowMuch
questions, the candidate answers were discourse
entities containing numbers and that had already been
tagged as one of these three types during the creation
of the XML-tagged files. The specific tag was selected
during this process based on the semantic
characteristics of the modified noun. This considerably
simplified the search for candidate answers.

4.5 TREC 2003 QA Results

We submitted one run for the main QA task and
two runs for the passage task. Our overall main task
score was 0.075, with scores of 0.070 for factoid
questions, 0.000 for list questions, and 0.160 for
definition questions. For the passage task, we had
some difficulty in matching up our answer to the
original text, since our sentence splitting often
modified the original text, making it difficult to
determine the offset and length of our answer. Our first
run contained our computations of the offsets and
lengths that we had constructed when the splitting was
performed; for this run, our socre was 0.087. We then
wrote a script that enabled us to examine the
correctness of the offset and length of our passage and
to make adjustments where necessary (37 percent of
the cases). This second run, while not fully automatic,
would have been the correct version if we had
submitted the actual passage rather than the offset and
length. For this run, our score was was 0.119 for the
factoid questions. These scores were all considerably
below the medians for these tasks.

As indicated earlier, we had not yet implemented
many of the routines described in the previous section
at the time of submission. With their implementation
and further detailed examination of the results, we can
provided an updated assessment of our progress in

answering questions using the XML-tagging of
documents and the use of XPath specifications for
obtaining the exact answer. Tables 1 and 2 show our
results for the passages task and the exact answer task,
respectively.

Table 1. Factoid Questions (Passage)
Question

Type
Num
ber

No
docs

Corr
ect

Accu
racy

Un
Mrr

Adj
Mrr Fnd

How 36 9 3 0.11 0.16 0.21 0.37
HowMany 45 4 22 0.54 0.51 0.56 0.59
HowMeas 45 16 0 0.00 0.04 0.05 0.41
HowMuch 5 1 0 0.00 0.00 0.00 0.00
What 98 33 9 0.14 0.13 0.20 0.49
WhatNP 139 42 24 0.25 0.20 0.28 0.39
When 39 12 9 0.33 0.28 0.40 0.74
Where 1 0 1 1.00 1.00 1.00 1.00
Who 5 2 1 0.33 0.20 0.33 0.67
Total 413 119 69 0.23 0.20 0.28 0.47

Table 2. Factoid Questions (Exact Answer)
Question

Type
Num
ber

No
docs

Corr
ect

Accu
racy

Un
Mrr

Adj
Mrr Fnd

How 36 9 2 0.07 0.11 0.14 0.26
HowMany 45 4 21 0.51 0.50 0.55 0.59
HowMeas 45 16 0 0.00 0.02 0.04 0.28
HowMuch 5 1 0 0.00 0.00 0.00 0.00
What 98 33 5 0.08 0.06 0.20 0.20
WhatNP 139 42 17 0.18 0.14 0.31 0.31
When 39 12 8 0.30 0.24 0.63 0.63
Where 1 0 1 1.00 1.00 1.00 1.00
Who 5 2 0 0.00 0.00 0.00 0.33
Total 413 119 54 0.18 0.15 0.22 0.34

In these tables, the first column shows our
breakdown of the question types and the second
column the number of each question type. The third
column shows the number of questions for which there
were no answers in the top 50 documents provided by
NIST. Since we used this set, we feel that an
evaluation of our performance should take into account
only those questions for which we have a possibility of
obtaining an answer. The fourth column shows the
number of correct answers using the NIST criteria.
The fifth column shows the accuracy based on the
number correct divided by the total number of
questions less the number with no documents. The
sixth column shows the mean reciprocal rank of our
answers for those cases in which an answer was
obtained in the top five answers, without adjusting for
the questions with no answers. The seventh column
shows the mean reciprocal rank, with adjustment for
the questions with no answers. The eighth column
shows the percentage of cases in which our answer set

contained the correct answer (i.e., without regard to
the rank of our answer).

Our overall accuracy for the passages task is 0.167
(69/413) and for the exact answer task is 0.131
(54/413). These are somewhat better than our official
scores of 0.119 and 0.070, but they would still not
affect our low rank among participating teams. We
suggest that a better picture of our results is given by
our accuracy scores after adjusting for questions with
no answers in the top 50 documents. Our score of 0.23
for the passages task would place us in the 4th position,
and our score of 0.18 for the exact answer task would
place us in the 12th position. We would not suggest this
should be used as the measure to be used in ranking
teams, but only to indicate that the information
retrieval component is important and that,
notwithstanding, the basic mechanisms we have
employed are viable. In addition, the final column of
the tables further indicate the viability of our approach,
since they indicate that we are finding the answers, but
have further work to boost them in our ranking system.

For all question types, we have not yet
implemented the full range of tests that we used in past
years when using a database representation of
questions and documents. We believe that our further
implementation will lead to significant improvements.
In addition, we note that many of our routines were
implemented for specific question types. Many of these
routines can be usefully employed for other question
types and can be further generalized. Work in this area
is also likely to lead to some overall improvements.

5 Novelty Detection Using XML-Taggged
Documents

Our participation in the Novelty track had two
main components, one implementing special
procedures to handle the various tasks, and the other
implementing the procedures for performing the tasks.

In order to allow KMS to process the Novelty texts
and build XML representations for them, we first
added wrappers to the NIST provided texts to make
them XML compliant. We then processed the files
with KMS. Similarly, we added wrappers to the topic
file to make it XML compliant, and then processed it
with KMS, processing as text the title, description, and
narrative fields. For tasks 2, 3, and 4, we converted the
NIST-provided qrels files of relevant and new
sentences into XPath expressions that would select the
corresponding sentences from the XML versions of the
NIST texts.

5.1 Determination of Relevance

The basic relevance judgment for a sentence was
determined by examining its discourse entities and
antecedents if a discourse entity had an antecedent
(anaphors, coreferents, or definite noun phrases). Each
word, except words on a stop list, was compared to the
list of words obtained from the topic. The basic
criterion for selection of a sentence as relevant was
whether a sentence had two or more hits.

For task 1, the basic criterion was applied using
different amounts of information, with one run using
only the title, one run using the title and the
description, and a third run using the title, the
description, and the narrative (with words in sentences
containing the word “irrelevant” or the phrase “not
relevant” excluded from the list). A fourth run used all
the information as in the third run but required three
or more hits.

For task 3, where relevant sentences were
provided for the first five documents, a frequency list
was developed for words in discourse entities or
antecedents. The total number of words in this list was
also determined. For each sentence, a frequency score
was computed as the sum of the frequency count for all
word in the sentence on the frequency list divided by
the total number of words on this list. Then, the basic
criterion was modified. Sentences with two or more
hits were still selected as relevant, but also sentences
with a frequency score greater than a specified level
were also selected as relevant. For task 3, five runs
were submitted based on different frequency scores,
0.01, 0.02, 0.03, 0.04, and 0.05. The lower scores
allow more sentences, thus increasing recall.

5.2 Determination of Novelty

Once a set of sentences had been selected as
relevant, they were considered in order to determine
novelty. Sentences that were exact duplicates were first
eliminated. Next, each discourse entity was evaluated
for novelty against an accumulating list of all unique
discourse entities encountered thus far. Again,
antecedents were used in preference to the actual
discourse entity for anaphors, coreferents, and definite
noun phrases that had a non-empty antecedent
attribute. If a discourse entity from the current
sentence being evaluated was not found, it was added
to the growing history list and the sentence was
accepted as novel. In evaluating a discourse entity, if
all of its words were present in a discourse entity
already on the history list, the candidate was viewed as
old information. If all discourse entities in a sentence

were present on the history list, the sentence being
evaluated was characterized as overlapping with prior
information and thus eliminated from the set of novel
sentences.

For task 1, the novel sentences were selected from
the relevant sentences that had been determined as
described above. For task 2, where all relevant
sentences were given, only these were considered in
determining novelty; this task thus provides a
reasonable characterization of the novelty component
by itself. For task 3, the novel sentences will be
selected from among a wider than used in task 1, since
these were conditioned by the greater recall of
relevance sentences. For task 4, we submitted the same
results as for task 2, since our novelty routines at this
time contained no processing that would take into
account sentences that had been identified as being
novel.

5.3 Novelty Track Results

For the Novelty track, we submitted four runs for
task 1, one run for task 2, five runs for task 3, and one
run for task 4; our submissions for tasks 2 and 4 were
identical.

Table 1. Task 1 (Relevance)
Run Precision Recall F-Score

clr03n1t 0.71 0.25 0.309
clr03n1d 0.72 0.32 0.385
clr03n1n2 0.69 0.45 0.483
clr03n1n3 0.72 0.24 0.316

Table 2. Task 1 (Novelty)
Run Precision Recall F-Score

clr03n1t 0.51 0.24 0.272
clr03n1d 0.51 0.31 0.331
clr03n1n2 0.50 0.40 0.410
clr03n1n3 0.51 0.24 0.278

For task 1, our best run received an F-score of
0.483 for relevant sentences and 0.410 for new
sentences. For all runs, our F-scores were on average
higher than the median. When examining the scores
by the topic type, we found that on relevance, our F-
scores were quite similar, but on novelty, there was a
wide difference in our system’s performance, achieving
a much higher average F-score on event topics. For run
clr03n1d, our F-score on event topics was 0.369 and
for opinion topics, it was 0.282.

The results show clearly that more information
describing the topic is valuable in increasing recall
dramatically, while precision is only moderately

different. Changing the number of hits for relevance
determination clearly decreases the recall significantly,
to less than what was achieved with less information.

Table 3. Task 2 (Novelty)
Run Precision Recall F-Score

clr03n2 0.71 0.91 0.788

Task 2 shows that the novelty component of our
system is performing at a quite high level. This
indicates that when the relevance determination is of
high quality, we are able to discriminate novel
information quite well. If our system improves its
relevance assessment, or if our system operates in an
environment where a user can provide relevance
feedback, we can expect to identify novel information
with considerable fidelity. This would be quite useful
for text summarization.

Table 4. Task 3 (Relevance)
Run Precision Recall F-Score

clr03n3f01 0.48 0.84 0.558
clr03n3f02 0.48 0.77 0.541
clr03n3f03 0.48 0.72 0.527
clr03n3f04 0.48 0.68 0.513
clr03n3f05 0.48 0.63 0.493

Table 5. Task 3 (Novelty)
Run Precision Recall F-Score

clr03n3f01 0.33 0.79 0.419
clr03n3f02 0.33 0.73 0.408
clr03n3f03 0.33 0.69 0.401
clr03n3f04 0.33 0.65 0.395
clr03n3f05 0.33 0.61 0.383

Task 3 also indicates the value of relevance
feedback, as well as the value of using frequency
assessments in improving recall. We also made an
additional five runs with the frequency score cutoff at
values from 0.06 to 0.10, with the trends shown above
occurring with them as well, with lower and lower
values for recall, with a resultant degradation in the
overall F-score.

Table 6. Task 4 (Novelty)
Run Precision Recall F-Score

clr03n1t 0.53 0.91 0.655

As indicated above, we submitted the same run for
task 4 as for task 2; our lower F-score of 0.655 for new
sentences is a direct reflection of the decreased
performance brought about by the degradation of
precision.

6 Summary

Our results on the QA and Novelty tracks indicate
that our approach of using massively XML-tagged
documents is viable and worth continuing
development. There are many opportunities that will
be investigated.

References

Litkowski, K. C. (2001). Syntactic Clues and
Lexical Resources in Question-Answering. In E. M.
Voorhees & D. K. Harman (eds.), The Ninth Text
Retrieval Conference (TREC-9). NIST Special
Publication 500-249. Gaithersburg, MD., 157-166.

Litkowski, K. C. (2002a). CL Research
Experiments in TREC-10 Question-Answering. In E.
M. Voorhees & D. K. Harman (eds.), The Tenth Text
Retrieval Conference (TREC 2001). NIST Special
Publication 500-250. Gaithersburg, MD., 122-131.

Litkowski, K. C. (2002b). Digraph Analysis of
Dictionary Preposition Definitions. Proceedings of the
ACL SIGLEX Workshop: Word Sense Disambiguation.
Philadelphia, PA., 9-16.

Litkowski, K. C. (2003a). Question Answering
Using XML-Tagged Documents. In E. M. Voorhees &
L. P. Buckland (eds.), The Eleventh Text Retrieval
Conference (TREC 2002). NIST Special Publication
500-251. Gaithersburg, MD., 122-131.

Litkowski, K. C. (2002a). Text Summarization
Using XML-Tagged Documents. In Proceedings of the
DUC 2003 Document Understanding Conference.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

