Text Summarization Using XML-Tagged Documents

Kenneth C. Litkowski
CL Research
9208 Gue Road
Damascus, MD 20872
ken@clres.com

Abstract

CL Research’s participation in the Document Understanding Conference extended the framework used in
the TREC 2003 question-answering track, in which texts are parsed and processed into XML-tagged documents
where sentence elements are marked with discourse, syntactic, and semantic attributes. This extension was made
primarily to test the viability of using XML-tagged documents for summarization. The extension of the Knowledge
Management System was able to take advantage of these attributes in implementing various text summarization
capabilities. While implementation of these capabilities made little use of current summarization technologies, the
CL Research system performed at a higher than expected level, finishing first in mean length-adjusted coverage for
summaries against a provided viewpoint. The system performed less well on this measure in event summarization
(tenth), novelty summarization (fifth), and headline generation (eleventh), but performed well on quality measures
(finishing first among teams participating in all tasks)) and relevance (finishing first on each summarization task,
with all sentences in these tasks judged relevant to the topic).

The system’s performance arises primarily from the use of an “antecedent” tag attached to referring
expressions (such as pronouns) within a document. In particular, when accumulating word frequencies, the
antecedent was used instead of the referring expression; thus, instead of treating a pronoun as a word in the
frequency count, its antecedent was used. The system’s performance demonstrates the basic viability of using
XML-tagged documents. Many options were explored in setting up the summarization capability, indicating
considerable flexibility in examining documents from many perspectives and considerable potential in possible
further improvements in the system. The system can indicate not only that a concept appears frequently within a
document, but also how it is used (e.g., as subject, verb object, or prepositional object). More specifically, the
availability of considerable structural information within documents permits a relatively simple examination of
phenomena that have been used in text summarization, as well as the creation of a document’s semantic network.

1 Introduction

In the TREC 2002 question-answering track
(Litkowski 2002a), CL Research presented unofficial
results which suggested that exploiting XML-tagged
documents could potentially yield results equaling the
best systems. It was also suggested that XML-tagged
documents could beuseful in such NLP applications as
text summarization. The paper particularly described
how the XML Analyzer provided access to the XML
trees representing one or more documents, allowing
examination and manipulation of low-level nodes in
the trees, with utility for many NLP applications..

In response to the call for participation in the
Document Understanding Conference (DUC), the
XML analyzer was first extended to allow more
detailed examination of word frequency and the kinds
of syntactic and semantic relations present in the
documents. further modifications were then made to
the XML Analyzer to enable the types of

summarizations called for in the DUC 2003 tasks
(three of which required use of contextual
information). Since CL Research had not participated
in previous DUCs, it was necessary to implement more
general summarization capabilities first, before
responding specifically to the DUC 2003 tasks.

As a result of the changes to the XML Analyzer,
the summarization functionality was embedded inside
a more comprehensive processing system, known as
the Knowledge Management System (KMS). This
system is designed to provide a single integrated text
processing capability: (1) converting arbitrary
document types into an XML markup identifying text
segments, (2) parsing and processing the text into
XML-tagged documents, and (3) providing a single
interface allowing a variety of text analysis options,
including summarization, question-answering, and
information extraction.

Section 2 presents a description of the DUC 2003
tasks. Section 3 provides an overview of the KMS,

with emphasis on how the XML output is generated
and with a general description of the analysis modes
used to examine the output. Section 4 describes the
procedures used to perform each of the DUC tasks.
Section 5 presents and analyzes the results and section
6 describes anticipated changes to the KMS and how
these changes will provide an integrated environment
that will allow a user to examine documents from
many different perspectives.

2 DUC 2003 Task Descriptions

DUC 2003 consisted of four tasks. Task 1 was to
create very short summaries (of approximately 10
words) of 624 newspaper and newswire articles; these
summaries can be construed as headlines, although
participants were allowed to use any format (including
keyword lists). Task 2 was to produce 100 word
multidocument summaries focused by events for 30
clusters of documents; participants were provided with
the documents and a description of a seminal event,
containing what, who, where, and when statements
and a topic explication (a paragraph) for each event.
Task 3 was to produce 100 word multidocument
summaries focused by viewpoints (a natural language
string no longer than a sentence) for 30 clusters of
document; participants were provided no additional
information about these viewpoints. Task 4 was to
produce 100 word multidocument summaries in
response to a question for 30 clusters of documents;
participants were provided with a question, a narrative
describing relevant documents, and a set of sentences
deemed relevant; the task essentially required a
summary of the relevant sentences.

The documents for the first three tasks came from
the AQUAINT Corpus of English News Text on two
CD-ROMs containing documents from Associated
Press Newswire, New York Times Newswire, and
Xinhua News Agency. These documents were stored
with formatting tags. The documents for the fourth
task came from the TREC CD-ROMs containing
documents from the Foreign Broadcast Information
Service, Los Angeles Times, Financial Times, and the
Federal Register; each document type had its own
document formatting description. Participants were
provided with the 2000 documents used in DUC 2003.

Human assessors first hand-generated three
summaries for each of the tasks. A single summary
was deemed to be the target against which
participating systems would be judged. Each of the
100-word target summaries were analyzed into
“meaning units”, usually corresponding to sentence
clauses conveying short nuggets of information. Each

ofthenon-selected hand summariesand each summary
generated by a participating system were then scored
by the assessors. (The other hand summaries were
judged as well to provide an indication of the
variability among human summarizers.)

Scoring involved assessors examining each “peer
unit” submitted by a system (usually a full sentence).
The assessor then judged which meaning units were
contained in the peer unit, along with a percentage
estimate of how much of the meaning unit was
covered. After all peer units were judged, the mean
coverage of the submission was computed as the sum
of each individual meaning unit’s score divided by the
number of meaning units. Mean coverage (a number
between 0.0 and 1.0) represents the score for each
submission for a document cluster. Mean length-
adjusted coverage was then computed as the mean
coverage adjusted downward ifa submission contained
more words than the target size (by an amount equal to
the target size divided by the size of the submission).
Scores for each task could then be computed as the
average mean coverage or the average mean length-
adjusted coverage over all document clusters.

For tasks 2, 3, and 4, the quality of the summaries
(i.e., summary coherence) was assessed using 12
quality questions. The assessors were asked to
determine the number of instances (0, 1-5, 6-10, and
>10) in a summary of confusing or disorganized text.
The quality questions counted capitalization errors,
incorrect word order in a sentence, number agreement
between subject and verb, missing syntactic
components (e.g., subject or main verb), unrelated
sentence fragments joined together, articles (a, an, the)
missing or used incorrectly, pronouns missing
antecedents, nouns without clear referents, nouns that
should have been replaced with a pronoun, dangling
conjunctions, unnecessarily repeated information, and
wrong sentence order. For each summary, the number
of quality questions with a non-zero count was totaled.

For task 1, the assessors rated the usefulness of
each headline on a five-point scale (from “no use” to
“almost as good as the document”). For task 4, the
assessors rated the responsiveness of the summary to
the question on a five-point scale, from “unresponsive”
to “fully responsive”.

Participating teams were provided with the results
of the human assessors’ scoring for all 21 teams, in a
form suitable for further analysis. Not all teams
participated in all tasks: task 1 (13), task 2 (16), task
3 (11), task 4 (9), and all tasks (4). Identities of the 20
teams were not revealed. CL Research participated in
all tasks.

3 System Description

CL Research’s Knowledge Management System
consists of three main components: (1) conversion of
documents in various formats to a standard format
identifying text portions; (2) parsing and processing
the text into an XML-tagged representation, and (3)
document querying, involving use of the XML-tagged
representation for NLP applications such as text
summarization, question answering, information
extraction, and other analyses. The overall architecture
of the system is shown in Figure 1.

Document Conversion

(Text Identification)
\

Parsing, Discourse and Sentence
Analysis, and XML Tagging
\

Document Querying

Text Summarization
Question Answering
Information Extraction
Document Semantic Network
Search/Query
Miscellaneous Probing

Figure 1. Architecture of Knowledge
Management System

Extensible Markup Language (XML) was chosen
as the wunderlying representational mechanism,
primarily because it provides a more natural vehicle
for retaining the tree structure produced in parsing
sentences. XML also provides a convenient mechanism
for retaining, in attributes attached to tree nodes,
annotations attached to parse tree nodes. The XML
representation conveniently acts as an intermediate
database of structured text, without the need to invoke
the overhead of structured databases (i.e., conversion
into and extraction from these databases).

A valid XML document is a tree and the entire
representation can readily be designed on this tree
structure. An entire collection (or any subset of
documents) can be represented as one tree; the next
level of the tree represents each document. At the next

level, each document may be represented as a set of
sentences, each of which may then be subdivided into
sentence segments or clauses (elementary discourse
units), which are then broken down into traditional
parse trees, ending in leaf nodes corresponding to the
words in the sentences. Each node in the tree may have
associated attribute names and values.

A key part of the XML design philosophy is the
ability to transform an XML file into usable output for
display or other purposes (e.g., populating a database).
This is accomplished via XML stylesheet language
transformations (XSLT). XSLT is based on XPath
expressions, which specify the path from the top of the
XML tree to some intermediate or leaf node.
Automatically generated XPath expressions are used
extensively in probing documents for summarization,
question answering, information extraction, general
searches or queries, and overall document structure.
Unlike traditional search engines, which treat text only
sequentially (e.g., exact strings or proximity searches),
XPath expressions combine traditional search
mechanisms with structured searches. For example, in
answering a when question, an XPath expression can
look for sentences containing both the strings in the
question and the elements within those sentences that
have been tagged as time elements, regardless of how
or where they may be expressed in the sentence.

3.1 Document Conversion

The first problem in processing documents is
identifying the actual text from metadata and
formatting instructions. The plethora of document
formats is somewhat daunting, so an intermediate
solution has been taken of converting documents in
these different formats to web pages (generally in
HTML format). Many major word processing software
packages (Microsoft Word, WordPerfect, and freely
available PDF converters) have options to convert
documents to web pages. The first component of KMS
converts web pages into an XML format with a
document identifier and text to be processed.

Document conversion is generally quite rapid,
taking only 15 or 20 seconds. Sets of arbitrary web
pages have been downloaded from Google News,
folders containing 20 Word documents, and the PDF
documents from last year’s DUC proceedings. These
documents have been converted , parsed and processed
as described in the next section, and general and topic
oriented summaries for these documents have been
created in 5 to 10 minutes.

This step may be bypassed entirely when
documents are already available in structured form

containing tags that adequatelyidentifytext portions to
be processed. KMS enables a user to open a data type
definition (DTD) file (used by SGML or XML) and
specify the tags that identify individual documents in
a file, document identifiers, and tags enclosing text
material to be processed. This was the mechanism used
in DUC 2003, since DTDs were available for the
documents to be summarized.

3.2 Text Parsing and Processing

The second component of KMS parses and
processes text into an XML-tagged representation.
This step is the most time-consuming part of KMS,
although it still is quite rapid, processing in excess of
400 sentences per minute. For the processing of web
pages from Google News, for example, it took longer
to select desired articles than it took to process them.

The parsing and processing component consists of
three modules: (1) a parser producing a parse tree
containing the constituents of the sentence; (2) a parse
tree analyzer that adds to a growing discourse
representation of the entire text and identifies key
elements of the sentence (clauses, discourse entities,
verbs and prepositions) and captures various syntactic
and semantic attributes of the elements (including
anaphora resolution and WordNet lookup); and (3) an
XML generator that uses the lists developed in the
previous phase to tag each element of each sentence in
creating the XML-tagged version of the document.

3.2.1 Parser

Text processing begins by splitting the text into
sentences. The splitter is very efficient and accurate,
particularly dealing with abbreviations and initials
that frequently result in sentences being improperly
split. After splitting, each sentence is submitted to the
parser. The use of the Proximity parser was continued,
described in more detail in (Litkowski, 2002c). As
described there, the parser output consists of bracketed
parse trees, with nonterminal nodes corresponding to
sentence constituents such as clauses, noun phrases,
and prepositional phrases, and leaf nodes describing
the part of speech and root for each sentence word.
Annotations, such as number and tense information
and attachments points of noun and prepositional
phrases, may be included at any node.

3.2.2 Discourse and Sentence Analysis

The sentence parsing in the CL Research system
is part of a broader system designed to provide a

discourse analysis ofan entire text; this system is being
used for processing encyclopedia articles, historical
texts, scientific articles', as well as the newswire or
newspaper texts in DUC, TREC, and the RST treebank
(Linguistic Data Consortium, 2002). Frequently, the
input has already been tagged (e.g.,in SGML) and the
processing may result in additional tagging.

After each sentence is parsed, its parse tree is
traversed in a depth-first recursive function. During
this traversal, each non-terminal and terminal node is
analyzed, making use of parse tree annotations and
other functions and lexical resources that provide
semantic interpretations of syntactic properties and
lexical information.

At the top node in the tree, prior to iteration over
itsimmediate children, the principal discourse analysis
steps are performed. Each sentence is treated as an
event and added to a list of events that constitute the
discourse. Data structures used for anaphoraresolution
are first updated. Next, a quick traversal of the parse
tree is performed to identify discourse markers (e.g.,
subordinating conjunctions, relative clause boundaries,
and discourse punctuation) and to break the sentence
down into elementary discourse units. The sentence’s
verbs are identified and maintained at this stage, to
serve as the bearers of the event for each discourse
unit.

After the initial discourse analysis, the focal points
in the traversal of the parse tree are the noun phrases.
When a noun phrase (discourse entity) is encountered,
its constituents are examined and its relationship to
other sentence constituents are determined. The
relationship analysis identifies the syntactic and
semantic relations which characterizes the entity's role
in the sentence, and a governing word to which the
entity stands in the semantic relation (usually a verb or
preposition, and if a preposition, where it is attached).

Each noun phrase is added to a list of discourse
entities for the entire text, i.e., a “history” list. As each
noun phrase is encountered, it is compared to discourse
entities already on the history list. This comparison
first looks for a prior mention, in whole or in part, to
determine whether the new entity is a coreferent of a
previous entity (particularly valuable for named
entities). If the new entity is an anaphor, an anaphoric
resolution module is invoked to establish the
antecedent. A similar effort is made to find antecedents
for definite noun phrases. The noun phrase’s
constituents are examined for numbers, adjective
sequences, possessives (alsosubjected to the anaphoric
resolution module), genitive determiners (made into

ISee http://www.clres.com/sa-articles.xml.

http://www.clres.com/sa-articles.xml

separate discourse entities), leading noun sequences,
ordinals, and time phrases. Finally, an attempt is made
to assign a semantic type to the head noun of the
phrase using WordNet or an integrated machine-
readable dictionary or thesaurus.

If a noun phrase is part of a prepositional phrase,
a special preposition dictionary is invoked in an
attempt to disambiguate the preposition and identify its
semantic type. This module identifies the attachment
point of the preposition and uses information about the
syntactic and semantic characteristics of the
attachment point and the prepositional object for this
disambiguation. The preposition “definitions” in this
dictionary are actually function calls that check for
such things as literals and hypernymy relations in
WordNet. A list of all prepositions encountered in the
text is maintained as the text is processed. (See
Litkowski (2002b) for further details.)

3.2.3 XML Tagging

As indicated above, the text analysis module
develops four lists: (1) events (the discourse segments),
(2) entities (the discourse entities), (3) verbs, and (3)
semantic relations (prepositions and punctuation).
These lists are used in a traversal of the entire
document, tagging each sentence with information
from items associated with each of its elements. Each
document consists of one or more tagged segments,
which may include nested segments. Each discourse
entity, verb, and preposition in each segment is then
tagged. A segment may also contain untagged text,
such as adverbs. Each item on each list has an
identification number (used in many of the functions of
the text analysis module). As indicated above, each
segment (and subsegment), discourse entity, verb, and
preposition may have associated attributes.

For segments, the attributes include the sentence
number (if the segment is the full sentence), a list of
subsegments (if any), the parent segment (if a
subsegment), the text of the segment, the discourse
markersin the sentence, and a type (e.g., a “definition”
sentence or, for nested segments, the type of clause).
For discourse entities, the attributes include its
segment, position in the sentence, syntactic role
(subject, object, prepositional object), syntactic
characteristics (number, gender, and person), type
(anaphor, definite or indefinite), semantic type (such
as person, location, or organization), coreferent (if it
appeared earlier in the document), whether the noun
phrase includes a number or an ordinal, antecedent
(for definite noun phrases and anaphors), and a tag
indicating the type of question it may answer (such as

who, when, where, how many, and how much). For
verbs, the attributes include its segment, position in the
sentence, the subcategorization type (from a set of 30
types), its arguments, its base form (when inflected),
and its grammatical role (when used as an adjective).
For prepositions, the attributes includeits segment, the
type of semantic relation it instantiates (based on
disambiguation of the preposition) and its arguments
(both the prepositional object and the attachment point
of the prepositional phrase).

The resultant XML-tagged text for individual
documents are combined into one overall file of
documents, each with a tag for the document identifier.
For DUC, the document clusters for tasks 2, 3, and 4
were combined into 30 files each (usually containing
10 to 25 documents). For task 4, the source files rather
than the provided relevant sentences were used, so that
the relevant sentences could be examined within their
original context. The files for tasks 2 and 3 were then
used for these tasks and for task 1 as well. These are
the files used for performing the DUC tasks. Parsing
and processing these 90 files (i.e., the three steps
described in this section) took approximately 100
minutes in total.

3.3 Document Querying

The third component of KMS examines XML-
tagged documents produced by the parsing and
processing component. Broadly, this component,
known as the XML Analyzer, consists of a graphical
user interface that enables a user to generate
summaries, answer questions, extract information, or
probe the content of the documents. The XML files can
be viewed (with retention of the nested structure) in
Microsoft’s Internet Explorer, but this does not allow
any systematic examination of the data. The XML
Analyzer loads the XML-tagged document (in one
step) where it can then be probed using one of several
analysis modes.?

Conventionally, those working with XML files
develop XML stylesheets (XSLT) for portraying the
data, perhaps embedded in interactive browser web
pages. XSLT involves the use of XPath expressions to
query the document (i.e., select and manipulate nodes
of the XML tree). These XPath expressions underlie
each of the analysis modes, including summarization.
The detailed use of these expressions is not described
in this section (see below for their use in
summarization and see Litkowski (2002a) for details

The graphical user interface can be seen at
http://www.clres.com/kms.html.

on question answering). In general, each analysis
mode selects particular node sets (e.g., sentences
meeting particular criteria, all discourse entities
labeled as persons, all discourse segments labeled as
subordinate clauses, or all prepositions labeled as
locational). The node sets are then subjected to
analysis to produce final output corresponding to the
analysis mode (e.g., summaries or answers to
questions). The development environment provides
powerful tools for low-level access to the XML data.

The XML Analyzer also links various lexical
resources into the examination of documents. This
includes the use of a stop list containing words that
occur very frequently (for some types of analysis),
machine-readable dictionaries, and WordNet. The
Analyzer also links back to the parser so that the user
can enter new questions to be posed to the text or new
points of view to slant a summary.

4 Summarization for DUC 2003

In general, all summarization in KMS begins with
a frequency analysis of discourse entities. A simple
XPath expression retrieves all discourse entities and
then examines each in term to develop a frequency
count of the words in them. However, the KMS
method of counting is somewhat different from
traditional methodsusedin information retrieval. First,
the traditional use of the stop list is employed to
remove frequent words (like articles). Next, it is
ascertained whether the discourse entity is a referring
expression, i.e., whether it has an antecedent
(pronouns, co-referring expressions, or definite noun
phrases), and the words in the antecedent are counted
instead of the words in the referring expression.

All summarization also requires the specification
of a summary length. While the user can specify any
value, it is strictly enforced. The XML Analyzer
terminates the summarization when the next piece of
information to be added would result in the length of
the summary exceeding the target.

At the time when the DUC submission was
generated, the implementation was essentially based on
extraction of key sentences. Only checks for sentence
duplication were made; methods for assessing
redundancy or substituting antecedents for pronouns
(or vice versa) had not been implemented . Further,
methods reflecting current research in summarization
have not been implemented .

Summaries generated using KMS for submission
usually required only a second or two. The total
processing time for the entire DUC submission was
about two hours.

4.1 Task 1: Headline Generation

For this task, which required a headline for each
document in the file, an option in the XML Analyzer
was invoked to produce automatically a summary less
than or equal to 10 words for each document. The top
10 words of the frequency list were used to examine
the discourse entities in each sentence (removing stop
words), counting the occurrences of these words in the
sentence. the sentence with the most hits was then
selected and its length examined. Ifit was less than 11,
the full sentence was submitted . If not, subsegments
(clauses) were removed one at a time, attempting to
reach the cutoff; if it did, the reduced sentence was
submitted. If this process still left more than 10 words,
the last words were removed down to a total of 10.

4.2 Task 2: Summaries Focused by Events

In this task, only the what statement was extracted
from the event description and this statement was
processed into an XML representation using the
second component of KMS. The who, where, and
when statements and the topic explication for each
event were not used. A single file was created
containing only the topic number and the what
statements (e.g., “Kofi Annan visits Libya to appeal for
surrender of PanAm bombing suspects”). This file was
parsed and processed into an XML representation of
each event characterization.

To create a summary for a particular topic, the
topic number is selected and a reference list is
generated containing all words in all discourse entities
in that topic. Then, the document file corresponding to
the topic number is loaded into the XML Analyzer.
Each sentence in each document is assessed against the
reference list and the number of words in the discourse
entities of the sentence determined. The number ofhits
characterizes the importance of the sentence. Those
with the highest number of hits are selected for
inclusion in the summary. A simple check was made
among the sentences to eliminate full duplicates (a
common occurrence in the DUC documents) and then
the sentences selected were ordered by document date
and position within its document. This creates a
minimal ordering of the sentences intended to
maintain the sequential ordering of the event.

4.3 Task 3: Summaries Focused by
Viewpoints

In this task, the viewpoint was parsed and
processed into an XML representation using the

second component of KMS. A single file was created
containing the document cluster number and the
viewpoint (e.g., “The banks are using all tactics to
keep the profitable ATM non-customer charge”). This
file was parsed and processed into an XML
representation of each viewpoint.

Summaries were created using the same steps as
Task 2: selecting a cluster number, forming a reference
set of discourse entities, examining each sentence for
the number of hits of the reference entities, and
picking those with the highest number for inclusion in
the summary.

4.4 Task 4: Summaries Focused by a
Question

This task was performed in essentially the same
way as Tasks 2 and 3. As with Task 2, only the
question was used; the narrative was not. A single file
was created containing the questions (e.g., What drugs
are being used in the treatment of Alzheimer's Disease
and how successful are they?) and parsed and
processed into an XML representation.

Because a set of relevant sentences from the
documents was provided, some artificial processing
had to be introduced into the KMS. The full text from
which these sentences were taken was processed so
that they were within their proper context. To
accomplish this, the system had to be forced to select
the provided relevant sentences and then use these
sentences as the basis for creating the summary. (The
question answering component of the KMS was not
used.) These sentences were treated as the text to be
summarized and a frequency count of the words in the
discourse entities of these sentences was created . Those
sentences containing the highest number of hits of the
most frequent words were selected for the summary.

5 Results and Analysis

The results on the four tasks are shown in Table 1.
In the table, the first column identifies the task number
and the number of participating teams. The second
column (MLAC) is the average mean length-adjusted
coverage in the results provided by the assessors for
624 headlines and 30 summaries for each of the other
tasks; this score gives a penalty for summaries that
exceed the target. The third column is a variation on
MLAC (MLAC”) that gives a bonus for summaries
that are less than the target size. This variation
indicates the density of the coverage (i.c., per unit of
text). The fourth column shows the CL Research rank
among the participating systems. The fifth column

shows the range of the variation in the MLAC’ scores.
(Ranks are similar for MLAC and MLAC’. CL
Research’s rank is identical for Tasks 2 and 3, and one
position lower for the other tasks. The change in ranks
for Task 2 is more significant for some systems.)

Table 1. Mean Length-Adjusted Coverage
Task | MLAC [MLAC’ | Rank Range
1(13)| 0.112 0.169 11 0.144 - 0.385
2 (16)| 0.145 0.236 10 0.082 - 0.328
31| 0.128 0.213 1 0.108 - 0.213
49| 0.104 0.168 5 0.074 - 0.215

Table 2 shows the system’s performance and rank
on the other two primary measures: the number of non-
zero quality counts in the summaries (each out of 360)
and the number of sentences in the summaries that
were judged not related to the topic (these judgments
were not made for Task 1). Among the four systems
performing all three tasks, the total of 128 was the
lowest (compared to 144, 175, and 231). No other
system had zero non-relevant sentences for all tasks
(generally, all systems performed well on this
measure). For Task 4, the system was ranked 5™ of 9
on responsiveness of the summary to the question. For
Task 1, the headlines were judged the least useful.

Table 2. Quality and Relevance

Task Quality Count Non-Relevant
2 55(7) 0()
3 41 (2) 0 (1)
4 32 (1) 0 (1)

For Task 1, an experiment used the most frequent
discourse entities in a document and the most frequent
verb for which these discourse entities was the subject.
The intent was to search for appropriate prepositional
phrases that might go along with the subject and main
verb, but appropriate criteria were not developed at the
time of submission. In retrospect, a semicolon
delimited list of keywords based on the overall
document frequencies could easily have been
submitted. Headline creation seems to be a somewhat
artificial task. Automatic keyword generation is more
likely to convey the substance of the text.

For Tasks 2 and 4, both of which require delving
down from a general statement of a topic to more
specific instances, the lower performance was due to
an inability to create summaries that generalized
relevant sentences. That is, given a set of relevant
sentences, some abstraction away from the details is
required. The summarization only extracted detailed
sentences and no procedures were in place to
generalize from these specifics. On the other hand, the

scores would likely have improved by implementing
procedures that simply removed redundant sentence
components, enabling more sentences to be added to
the summaries.

In Task 4, a degenerate XML tagging was
obtained for one question. To handle this case, as well
as to generalize the ability of the KMS to provide
different slants on a set of documents, a capability was
implemented to allow a user to enter arbitrary text and
to use that text as the reference set, without parsing
and creation of an XML representation. To create this
reference set, each word of the reference text
(removing stop words) is used to determine the number
of hits in the documents’ sentences. This method may
work as well as the XML representation of the query.
This result seems to stem from the fact that when only
the discourse entities in the sentences are examined,
they do not contain verbs, prepositions, and adverbs in
the query, effectively negating their use in searching.

This functionality was also effectively used in
examining the other topical explications and narratives
provided with Tasks 2 and 4. That is, sentences or
phrases from this additional text could be entered for
use as reference text and could (virtually
instantaneously) create summaries with a different
slant, thus enabling a capability for examining a set of
documents from many perspective. Sentences not
included in the summaries could also be used as the
reference text, allowing further document probes.

In working with the questions in Task 4, the
reference text approach also identifies sentences
answering the fact-based questions posed in the TREC
question-answering track. Although this method
doesn’t extract the exact answer from the sentence, it
may prove to be a useful adjunct to question answering
by providing a candidate set of sentences.

6 Future Developments

As alluded to in the above discussions, the
availability of XML-tagged representations of
documents provides a significant set of opportunities
for further improvements. The exploitation of the data
has clearly only begun. Closer examination of the
summarization literature is expected to provide many
insights that can be effectively exploited with the XML
representations. The KMS provides the opportunity to
make these investigations much easier.

In addition, a capability for a more general
examination of document structure has now been
implemented in KMS . WordNet has been integrated
in KMS so that a document’s semantic network can be
examined. This is accomplished by identifying the

nouns and verbs in a document and hierarchizing them
using WordNet as a reference point. The nouns and
verbs are first collected according to their WordNet
synsets and then a determination is made of what
other WordNet relations are instantiated in the
document. Thus, for example, the document contains
an object noun and also a noun that is a part of that
object, the WordNet relation is instantiated. The net
effect of this process is the carving out a sub-WordNet
for each document, thus constituting the document’s
semantic network. (Seealso Litkowski & Harris (1997)
and Surdeanu & Harabagiu (2002).)

7 Summary

The performance of CL Research’s Knowledge
Management System in DUC 2003 corroborates the
conjecture in Litkowski (2002a) that XML-tagged
documents provide a useful basis for text
summarization. The KMS looks forward to reading
and summarizing the DUC 2003 proceedings.

References

Linguistic Data Consortium (2002). The
Rhetorical Structure Theory Discourse Treebank. ISBN
21-58563-223-6. Philadelphia, PA.

Litkowski, K. C. (2002a). Question Answering
Using XML-Tagged Documents. In E. M. Voorhees &
D. K. Harman (eds.), The Eleventh Text Retrieval
Conference (TREC 2002). Proceedings of the
Conference. Gaithersburg, MD., 328-337.

Litkowski, K. C. (2002b). Digraph Analysis of
Dictionary Preposition Definitions. Proceedings of the
ACL SIGLEX Workshop: Word Sense Disambiguation.
Philadelphia, PA., 9-16.

Litkowski, K. C. (2002c¢) "CL Research
Experiments in TREC-10 Question Answering", in
Voorhees, E. M. and Harman, D. K. (eds) Information
Technology: The Tenth Text REtrieval Conferenence
(TREC 2001), NIST Special Publication 500-250.
Gaithersburg, MD: National Institute of Standards and
Technology, pp. 122-31.

Litkowski, K. C. and M. D. Harris (1997)
Category Development Using Complete Semantic
Networks, Technical Report 97-01. Gaithersburg, MD:
CL Research.

Surdeanu, M. and Harabagiu, S. (2002).
Infrastructure for Open-Domain Information
Extraction. Proceedings of DUC 2002 in Human
Language Technology. San Diego, California.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

