The Dictionary Parsing Project: Steps Toward a Lexicographer's Workstation

Ken Litkowski

CL Research

ken@clres.com

http://www.clres.com

http://www.clres.com/dppdemo/index.html

Dictionary Parsing Project

Purpose: to create publicly available semantic networks and ontologies based on parsing dictionary definitions

http://www.clres.com/dpp.html

Participants

CL Research (Ken Litkowski)

► Use of CL Research's DIMAP (DIctionary MAintenance Programs) to maintain dictionaries, parse definitions, and analyze parse results, inventories of semantic relations

USC Information Sciences Institute (Eduard Hovy, Bruce Jakeway)

 Conversion of raw files, development of Perl scripts, ontology building, chunking data

Micra, Inc. (Pat Cassidy)

► Preparation of raw data from Webster's Revised Unabridged Dictionary (1913), updating files, importing WordNet data for more current words

■ Franklin Electronic Publishers, Inc. (Ned Irons)

Development of parser, porting to different platforms

Many advisors from computational lexicology and lexicography

Experience from previous MRD research, identification of defining patterns for semantic relations

Franklin Sentence Parsing Program

■ ATN-style grammar with 350 productions:

- start state, condition for transition, end state (with action functions to produce parse tree nodes and annotations)
- adds parsing goals dynamically based on subcategorization patterns for lexical entries
- parsing dictionary based on Oxford Advanced Learner's Dictionary (4th ed.)
- Parsing dictionary is easily extensible (currently exploring acquisition of lexical properties on the fly)
- Parses 400 definitions or 100 sentences per minute on 266 Mhz Pentium II with 64 MB RAM
- C source code available upon request (possible GNU GPL)
 - ► compiles under Visual C++ 6.0, Borland C++ Builder3, Linux, BSD Unix, Sun4
 - ► 120 pages of documentation
- Used by CL Research in Senseval (All-words category)
 - ► 68% precision, 67% recall at coarse-grained level (highest)
 - Best overall improvement over baseline among all systems

CL Research DIMAP (Dictionary Maintenance Programs)

■ NLP dictionary creation and maintenance

- ► Usual Windows file functionality, with additional dictionary merging, subdictionary creation, uploading other dictionaries, converting DIMAP dictionaries to LISP, Prolog, or user-defined formats
- ► Automatic creation of subdictionaries from integrated MRD or WordNet or identification of open compounds or capitalized phrases

Flexible underlying data structure for entries

► Multiple senses, each with usual paper dictionary data (definitions, usage notes, etc) and special fields for hypernyms, hyponyms, AV feature structures, semantic roles, semantic interpretation rules

Definition analysis functionality

► Parsing definitions, comparing definitions across dictionaries, examining inheritance hierarchies, regular expression searches on all fields, identifying semantic primitives using graph-theoretic model

• Integrated text parsing

DIMAP Dictionary

DIMAP Dictionary Entry

Definition Parsing

Definition Parsing Process

- Definitions placed into sentence frames appropriate to the part of speech, with special consideration given to selectional restrictions (usually parenthesized structures), usage notes ("used with *up*"), and specialized wording ("typically", "usually", "to a specified condition")
- Parse results (annotated parse tree) analyzed to identify extract hypernyms, synonyms, and other semantic relations (semrels)
- Use of defining patterns (e.g., manner: in(dpat((~ rep01(det(0)) adj manner(0) sr(manner)))) to identify semrels (hyernym, synonym, instrument, means, location, purpose, source, manner, has-constituents, has-members, is-part-of, locale, and goal)
- Identified semrels are placed in dictionary being parsed, where they are then available for subsequent analysis built into DIMAP functionality
- 400 definitions per minute on a 266 MHz Pentium II with 64 MB RAM

Examination of Parsing Results

- Examination of parsing results to make corrections to parsing system
 - ► Identifying parser problems
 - Identifying words unknown to the parser
- Listing identified semrels
- Identifying senses where no semrels were found
- Performing consistency analysis against WordNet (e.g., do hypernyms found from parsing match WordNet hypernyms)
- Definition comparison (mapping between two dictionaries), using word overlap or componential analysis method (see Litkowski, SIGLEX99)
- Analysis of dictionary digraph to identify primitives (based on ISA links)

Lexicographer Functionality

Definition Parsing	
Dictionary Entry:	Sense Number: Parsed: 0 Stop Parsing
Get Definition Parse Definition Parse All Definitions Make Selections Start After What to Parse C Defs Only C Exs Only C Defs and Exs C Window	☐ Identify S <u>e</u> mrels ☐ S <u>t</u> ep Mode ☐ Close☐ Add Semrels ☐ Resume
Definition/Example:	
	Set Debug Flags ✓ Debug Flags Set
Parse Results:	
Debugging Specifications	Printing Preferences (Base Dictionary + Extension)
Live parses after each word	Parse Trees (*.par)
Live parses after word:	☐ Unable to parse (*.nop) ☐ Bad Parses (*.bad)
☐ CheckBox3	STUB Parses (*.stb)
	Parses w/ Unknown Words (*.unk)
Close	☐ Semantic Relations (*.sem) ☐ No Semrels Found (*.nos)
	☐ WordNet Differences (*.wna)

Definition Comparison

Digraph of Primitive Subordinating Conjunctions

Figure 2: Dominant Subordinating Conjunction Strong Component

Testing Dictionary Entries (Word- Sense Disambiguation)

- Given a corpus sample, how well does characterization of current sense set (including identified semrels) allow WSD
- Use SENSEVAL model (with target words tagged or untagged)
- **Examine individual sentences or entire corpora**
- Accompanying scoring program to determine effect of improvements
- 90 sentences per minute on a 266 MHz Pentium II with 64 MB RAM

Testing Corpus Instances (Senseval)

DPP Status

- Parsing definitions to build semantic network (like thesaurus or MindNet) automatically (0.86 semrels per sense, compared to 3.26 for MindNet)
- Identifying backbone of hierarchy with genus terms and part-of relations
- Filling in details of network with many types of semantic relations, conceptually oriented, including purpose, means, manner, source, destination, locale and location
- Ability to map categories, concepts, or definitions between dictionaries and ontologies based on parsing their descriptions
 - ("if it quacks like a duck, moves like a duck, has the parts of a duck, chances are that it's a duck")
- Inventories of semantic relations (UMLS, WordNet, EuroWordNet, Micra, Wordsmyth, Webster's 3rd prepositions)