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Abstract

Contextualized word embedding (CWE) models such as BERT (De-
vlin et al. (2019)) have been used in many NLP tasks. Gessler and
Schneider (2021) (G&S) focus on the use of BERT in disambiguating
rare senses of nouns, verbs, and prepositions. In examining preposi-
tion disambiguation, their results are comparable to earlier efforts and
achieving better results than problems described in Litkowski (2013).
Earlier efforts achieved results using traditional NLP methods, charac-
terizing syntactic and semantic behaviors. BERTology provides a new
resource and additional perspective that might assist in usual lexico-
graphic procedures. We begin exactly at the place where G&S ended,
using its methods, adding the further property of keeping a link to the
instances in the Pattern Dictionary of English Prepositions (PDEP,
Litkowski (2014)), enabling further lexicographic analysis. Our paper
provides a lexicological analysis of the instances, which may provide
the basis for lexicography.1

1 Introduction

Contextualized word embedding (CWE) models such as BERT (Devlin et al.
(2019)) have been used in many NLP tasks. Gessler and Schneider (2021)
(G&S) discusses these tasks and particular indicates that ”it is not easy to
understand exactly which aspects of linguistic form and meaning contex-
tualized word embeddings are able to capture.” While they focus on the

1Working Paper 22-02. Damascus, MD: CL Research. All code is available at https:
//github.com/kenclr/BERTLex.
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use of BERT in disambiguating rare senses, their methods provided im-
plementations that provide further investigation of lexicography. We have
implemented their (Python) methods and initiated further lexicographic ex-
aminations.

Lexicography goes beyond disambiguation. A dictionary defines the
communicative and cognitive functions of a word and chooses the struc-
tures for presenting the words, such as a frame and distribution structure.
A lexicographer will examine additional information characterizing a word.
CWE models provide a huge amount of data that can benefit a lexicogra-
pher. G&S provides a starting point. We use the preposition material as
in G&S, from the corpora in the Pattern Dictionary of English Prepositions
(PDEP, Litkowski (2014)).

In section 2, we describe the relevant material provide the general ap-
proach to synchronizing the two compilations (PDEP and BERT). In section
3, we describe the three PDEP corpora, particularly indicating how they dif-
fer from each and why it may be useful to include the metadata for each
instance. the steps using the tagging and the initial output of this pro-
cess. Section 4 shows the distribution of the three corpora for the PDEP
instances, particularly moving the emphasis from multiple-word to single-
word prepositions, describing these changes in section 4.1. In section 5,
we characterize the groups of PDEP senses, one used in the G&S analysis
and four other groups not subjected to further detailed analysis. Section 6
provides several lexicographic analyses of the 346 test instances that were
predicted in the G&S paper. Section 7 identifies several other questions that
can be addressed and characterized at BERTological lexicography. Section 8
identifies other papers that have aspects of BERTology that might be useful
for lexicography.

2 The Contour for Word Sense BERTology

G&S uses two corpora, one from OntoNotes 5.0 (Hovy et al. (2006)) for
nouns and verbs and one from the Pattern Dictionary of English Prepositions
(PDEP, Litkowski (2014)) which we will use here. The PDEP corpus consists
of 81,489 sentences. G&S used this corpus to construct a test set and a
training set used to predict the test instances for the most common 48
prepositions, discarding infrequent senses (fewer than 5 times). The training
set contained 33,090 instances and the test set contained 8,020 instances.2

2This discussion contains only a small amount of G&S. More of the details can be
seen the paper (Gessler and Schneider (2021)). As described there, all code for that
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The key methodology uses BERT3 to characterizes each test and train
sentence. Each test sentence is encoded (e.g., ’Pry now asks you to advise
him >>about<< a house he wants to buy .’, focusing on the target preposi-
tion. The object is to predict which sentences of the training set are closest
to the test sentence, using the cosine metric. In predicting, the subset of
the training set uses sentences with the target preposition. Where possible,
the 50 nearest sentences are identified. For example, the closest training
sentence to the above test is ’The hostel staff advised us >>about<< the
best areas for walking ...’.

The predictions are printed into a tab-separated value table, with a row
for each test instance. Each row contains 204 cells, consisting of the test
sentence, the label (sense) of the preposition, the lemma (i.e., without the
sense identifier), the label frequency for the sense in the training set, and
the results of the 50 closest training items. Each closest item has four pieces
of information: the label of the training sentence, its lemma, its sentence,
and the distance of the training sentence to the test sentence. In summary,
each test is characterized with 204 cells of data. This table is saved into a
Python DataFrame where it can be used to examine the results.4

We made a few modifications and additions to the code. The G&S code
provided with the ability to create a different random shuffling to the PDEP
corpus.5 Rather than doing so, we used the shuffled version that is available6

so that we could replicate G&S. Also, in predicting, the test instances with
the same label are shuffled in batching7. This does not seem to be significant
for the PDEP instances, but would result only in modifying the ordering of
the test set. We did not use this shuffling, again with the idea of replicating
G&S.

In reading the PDEP instances,8, several fields are constructed each sen-
tence: a TextField (for the tokens in a sentence), a SpanField (identifying

work is available at https://github.com/lgessler/bert-has-uncommon-sense. We have
implemented their Python code locally as the starting point for the discussion in this paper.

3bert-base-cased
4This table, pdep-bert-base-cased 7.tsv, is included the Data at http://www.clres.

com/online-papers/BERTLex.zip. Details of changes to G&S will be provided below if
others wish to make even further changes.

5Using bhus/scripts/format pdep.py. See changes to this script in our implementation.
The script bhus/scripts/counting.py characterizes the PDEP instances used and not used
in G&S; these counts are described in sections 3, 4, and 5 and included in files in the
folder cache/clres stats.

6bhus/data/pdep/pdep test.conllu and bhus/data/pdep/pdep train.conllu
7In the function batch queries in bhus/common/util.py.
8In ClresConlluReader in bssp/clres/dataset reader.py

3

https://github.com/lgessler/bert-has-uncommon-sense
http://www.clres.com/online-papers/BERTLex.zip
http://www.clres.com/online-papers/BERTLex.zip


the location of the preposition in the sentence), a LabelField (identifying
the sense number of the preposition), a LemmaField (the lemma for the
preposition), and an ArrayField (characterizing embeddings for the preposi-
tion). In constructing these fields, each sentence assured that the source of
the sentence was acceptable, giving the corpus name, the instance number
of the corpus, and the location of the preposition (i.e., the one that used
for the SpanField). This meta data was not further used in G&S; we added
this meta data, created a MetadataField. This field is also used below in
the the lexicographic analysis making use of the BERT data.

3 The Three PDEP Corpora

PDEP has three corpora: OEC, FN, CPA. The tagging of these corpora may
be viewed in this order in their accuracy. OEC were generated through the
most amount of effort, with professional lexicographers and leading to entries
in the Oxford Dictionary of English (ODE, Stevenson and Soanes (2003)).
The entries were supported with up to 20 examples from the OEC, curated
by the lexicographers. FN instances were tagged by a single professional
lexicographer, using the sense inventory from the ODE, but also with some
additions based on judgment. These instances cover only 57 prepositions,
out of the total 303, not including multiple-word prepositions. The FN
instances were generated based on criteria that were not intended to be
representative. CPA instances were tagged by a computational lexicologist,
trying to be conforming with the OEC and FN tagging. These instances were
intended to be representative, drawn from the British National Corpus.

As indicated above (section 2), G&S selected a subset (41,110) of the
PDEP instances (81,489) for its analyses. The BERT embeddings for the
selected subset appear to provide a considerable level of characterization,
to the extent may be very useful in lexicography. Adding the metadata for
each instance will allow investigation of the differences between the three
corpora. In particular, these sense tags raise several questions worth analysis
and examination.9

9See the functions pdepinsts and unused in counting.py. There are actually 82,329
instances in the source, but 840 instances were not included in the online PDEP. These
instances (’v’, ’up until’, ’in connexion with’, ’apropos of’, ’vs.’, ’in course of’, ’amongst’,
”’fore”, ’on the heels of’) were not included.
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Data FN CPA OEC Total

PDEP Instances 26739 47285 7465 81489

No sense 160 6480 0 6640
Idioms 498 19975 2006 22479
Not located 68 1 1 70
Uncommon 2833 7392 1552 11777

G&S Instances 23180 13437 3906 40523

Table 1: Eliminating Instances from Analysis

4 Identifying the Analysands

Tables 1 and 2 show the distribution of the three corpora for the PDEP
instances, particularly showing that the CPA corpus had 58 percent of the
instances. Since the CPA corpus was developed as representative from the
British National Corpus (see Litkowski (2014)), many of the putative prepo-
sitions are actually adverbs or parts of phrasal verbs and needed to be elim-
inated from the analysis. G&S screened each instance to assess suitability
for the BERTology analysis. They removed any super-rare instances that
did not occur at least 5 times in the train set, viewing them as not sufficient
for evaluation.

Table 1 shows the four major criteria used to exclude instances. The first
criterion was exclude instances that had no preposition sense: an empty
sense, instances not words that were prepositions (usually adverbs), and
words that were part of phrasal verbs (e.g., come across). The next set
of exclusions was for instances that corresponded to phrasal prepositions,
containing a space to indicate idioms (multiple word expressions, MWEs).
Several instances have some problem locating the preposition (e.g., offset
issues). Finally, instances viewed as uncommon were eliminated. The script
listed a WHITELIST of 48 acceptable prepositions, eliminating 78 single-
word prepositions (see Appendix A, noting that 29 prepositions perhaps
could have been included as common). As indicated in Table 2, the relative
instances change dramatically, with FN and CPA switching percentages.
These percentages will be relevant in the below discussions.

Tables 3 and 4 show the absolute and the relative predictions of the
data frame. The first line indicates how many instances were used in mak-
ing the predictions. The second line shows the 8,231 test instance in each
corpus. The two bottom lines in these tables show the nearest prediction
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Data FN CPA OEC

PDEP Instances 0.328 0.580 0.092
G&S Instances 0.572 0.332 0.096

Table 2: Relative Instances in Analysis

Data FN CPA OEC Total

Train Instances 18495 11467 3128 33090
Test Instances 4673 2773 785 8231
Prediction Instances 4995 2372 864 8231
Correct Predictions 4169 1767 686 6622

Table 3: Instances in the Initial Dataframe

instances and whether they correspond to the sense in the test instance.10

The number of predictions is equal to the number of test instances, but they
differ, indicating that FN and OEC are more likely to use them as the first
prediction, with CPA using less frequent. Table 4 shows the percent of the
predictions were correct, indicating that FN was much more likely to be
correct than the other two corpora.

4.1 Relative Accuracy of Corpora Instances

Table 4 suggests that using BERT achieves excellent results, even using only
the first (of the 50) prediction. We next examine the extent to which this
first prediction uses the same corpus as the corpus in the test instance.11

As shown in Tables 5 and 6, each of the corpora has the largest number and

10In ranks.py, functions corpanal and corp2.
11In ranks.py, function corp test.

Data FN CPA OEC

Train Instances 0.559 0.347 0.095
Test Instances 0.568 0.337 0.095
Prediction Instances 0.607 0.288 0.105
Correct Predictions 0.506 0.215 0.083

Percent Correct 0.834 0.747 0.790

Table 4: Percent in the Initial Dataframe
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Test Corpus FN CPA OEC Total

FN Instances 4146 364 163 4673
CPA Instances 667 1844 262 2773
OEC Instances 182 164 439 785

Total 4995 2372 864 8231

Table 5: Correspondence Between Test and Prediction Corpus

Test Corpus FN CPA OEC

FN Instances 0.887 0.078 0.035
CPA Instances 0.241 0.665 0.094
OEC Instances 0.232 0.209 0.559

Total 0.607 0.288 0.105

Table 6: Percentage Correspondence Between Test and Prediction Corpus

percentages of the same corpus. FN is the most dominant use of itself (at
88.7%), also predicting substantial chunks for the test instances of the other
two corpora, so that FN is a prediction of 60.7% for the totality of the three
corpora.

These results may give a misleading impression, with different percep-
tions for the predictions of the individual prepositions. From the initial 48
prepositions, removing the eight prepositions (B) with only one sense leaves
40 polysemous prepositions.12

5 PDEP Senses

As indicated above, PDEP has 1039 senses, most having sentences that
exemplify them. Below, we describe the 207 senses without any instances
(section 5.1) and the 832 senses having instances (section 5.2).13 We provide
details about these groups, particularly to compare the senses used in the
G&S paper. This comparison is not done with the idea of criticizing the
paper, but rather to characterize the kinds of issues to be considered in
BERTological lexicography.

12In ranks.py with the function prep anal.
13In counting.py with the functions defs, with insts, and no insts
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5.1 Senses Without Instances

PDEP has 207 senses that have no instances in the three corpora.14 Most
(180) of these senses come about from the treatment of the 24 variants in
PDEP. These variants are characterized as being in the Tributary class.
The senses for these variants repeated the sense inventories for the base
preposition. For example, frae uses the 16 senses of from and then adds an-
other sense indicating characterizing it as a variant for the base preposition.
Each of the variants had one or a few instances, but did not have instances
for many of the senses from the base preposition.

The remaining 27 senses without instances correspond to rare or special
treatment. The first senses for by and of are senses that have two subsenses,
both having very large numbers of instances, but not with the supersense.
Others, such as by (10(2e)): ”indicating the sire of a pedigree animal, espe-
cially a horse”, had no instances. Others were senses that included the ODE
inventories (such as gone and vice) but without any example instances.

5.2 Senses With Instances

PDEP has 832 senses with instances in one of the corpora. G&S predicts
test instances covering 346 senses, but 11 of these senses are not in PDEP.
The lexicographer tagging the FN corpus used some ”senses” containing 2 or
3 PDEP senses, i.e., viewing as polysemous. Notwithstanding the multiple
senses, there were enough instances that they were predicted in the G&S
analysis. Later, we describe the G&S senses below in section 6. In this
section, we describe the 497 senses (832 - 335) that were not analyzed in the
G&S paper.15 There are three groups:

• Multi-Word Expressions (MWEs): PDEP contains 269 senses in
165 entries, such as because of and along with.16 The number of senses
and entries indicates that some MWE entries are polysemous. G&S
excluded instances having MWEs. While many of these prepositions
have only one sense, MWE disambiguation is a subject for further
analysis. Since three of the senses in two entries have no instances in
PDEP17, there are only 266 senses in 163 entries in counting in this
subsection.

14In counting.py with the function no insts.
15In counting.py with functions csenses (867) minus nondefs (35), minus senses

from ranks.py (346) minus nondefs (11) in counting.py.
16In counting.py with mwe function.
17back of 1(1), in behalf of 2(2), and in memoriam 1(1)
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• Uncommon Single-Word Prepositions: G&S established a white-
list of prepositions to be used for the analysis. As a result, 78 single-
word prepositions with 181 senses (see appendix A) not in this list
were treated as ”uncommon”.18 In reviewing this list, as many as 29
prepositions could be viewed as ”common”, i.e., polysemous and hav-
ing a sufficient number of instances supporting disambiguation and
prediction. This includes by, throughout, and within. This is not prob-
lematic with regard to the G&S analysis, since each preposition can be
analyzed and predicted independent of what is happening for results
of other prepositions.

• Senses of Common Words Not Predicted: G&S includes 48
prepositions in its whitelist, but 8 of these are monosemous (see B).
Of the remaining, 26 of the 40 polysemous prepositions have 50 senses
that were not used in the analysis because they had very few instances
(see B), i.e., insufficient for including in the predictions. Notwithstand-
ing, these senses have a few instances that are included for considering
in the distance analysis. For example, on 21(11) (paid for by, e.g.
dinner’s on me) does not have any instances among the test set, but
several of the instances in the train set were identified as being among
the nearest 50 instances.

6 Overview of Sense Predictions

G&S describes one PDEP sense (in its Figure 1), with further analysis in its
Results (section 5). This is for sense 20 of on, ”regularly taking (a drug or
medicine)”. They suggest that ”BERT is prioritizing syntactic criteria (’on’
following a verb, especially a copula)”, where this characterization is based
on general linguistic analysis rather than based on BERTological analysis.
This discussion can be viewed as appropriately lexicographic.

G&S predicted results for 8231 test instances. In this section, we provide
further examinations of all the test instances, following the procedure that
G&S used for the one sense. The 8231 instances covered 346 senses, an
average of about 24 instances for each sense. They envisioned that top 50
predictions would be computed. Fewer than 50 results would be generated
only when a preposition had fewer than 50 instances in the training instances
for a lemma, i.e., all senses, not just the sense of the test instance. This
occurs only for circa, which has 3 test queries and 17 training instances.

18In counting.py with the function uncommon.
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G&S also has 11 senses that are not in PDEP (B). Predictions were made
in 60 test instances for these senses. The tags for these senses were used by
the FN lexicographer. One sense (onto 3(3)), with one test query, was an
error. The other 10 senses were tagged by the FN lexicographer as having
two senses, either from ambiguity or judging that both were applicable.
Having multiple senses is not problematic, but may rather be suggestive
lexicography. 19

6.1 Procedures for Analysis of Predictions

In describing sense 20 of on, using one of the five test queries, G&S indicated
that there were only 14 occurrences of this sense in the training set. They
showed the nearest six results, with the first four using the same sense, and
with only six of the 14 instances made it into the top 50 for the query test.
Our objective was to examine these predictions for each of the 8231 test
queries.20

The predictions are contained in a tab-separated table, into a dataframe
which is used for the analyses. The results consist of 204 columns for each
test query: the test sentence, the label (i.e., the preposition sense, along
with corpus instance number for the sentence), the lemma, the number of
training sentences with the label, and four items for the 50 nearest instances
(the prediction and the corpus instance number for the prediction sentence,
its sentence, its lemma, and the distance). The table is the starting point
for examinations. Importantly, each prediction is independent of each other,
either for test queries using the same sense, other senses of the same lemma,
or other lemmas. As this discussion proceeds below, further questions will
arise for other analyses.

G&S described only one test query, one that has fewer than 51 training
instances (here 14), so that the top 50 predictions must have some other
senses of the lemma. This situation leads to two groups of the 346 senses,
with 161 senses having more than 50 training instances (high frequency
senses) and 184 senses having 50 or fewer instances (low frequency senses).21

For the low frequent senses, the question is whether all training instances

19For example, ”He studied at Ealing School of Art”, 1(1): expressing location in a par-
ticular place, and/or 4(2b): denoting the time spent by someone attending an educational
institution.

20The data for these analyses are contained in three tab-separated files: predictions,
ranks, and scores and available online, where they can be examined by anyone else.
The Python scripts will be included as well. The full script is contained in ranks.py; we
import all the functions in this file.

21In ranks.py with the function dfsanal.
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occur in the top 50 predictions, and if not, how many have not been found.
For the high frequent senses, the question is whether all 50 top predictions
have the same sense as the test query, and if not, how many predictions used
other senses for the lemma.

In the top 50 predictions, it is important to recognize that a polysemous
preposition could have several senses with no test but still be the predicted
sense. Also, when training instances have a very small number of instances
in the test set and a relatively just a few more such instances in the train
set could still be a predicted sense.

6.2 Nearest Training Instance

The first question asks whether the nearest training instance matches the
test query sense.22 To answer this question, we iterate through the rows of
the prediction table, counting the number of senses having more or fewer 50
number of training instances, incrementing the count of matches when the
nearest training instance (label 1 ) has the same label as the test query.

For the 159 high frequent senses, there are 7053 test queries; of these,
the two labels are the same in 5842 cases, at 0.828. For the 187 low frequent
senses, there are 1178 test queries; of these, the nearest training instance has
the same labels in 780 cases, at 0.662. These results suggest that the most
frequent senses are easier to match and the least frequent senses are much
more difficult to match. However, these results might be an artifact (e.g., see
Litkowski (2013)) since the PDEP instances used in G&S are not represen-
tative of the general corpus. Notwithstanding, the use of the BERTological
data provides several mechanisms for further analysis. For example, we
can ask the question of whether simply a large number of examples would
improve examination of the nearest training instances.

For 52 test queries, the distance of the nearest prediction is 0.0. There are
several reasons for this situation, arising in the corpora.23 Despite the small
number of these cases, they provide appropriate lexicographical descriptions
that need for consideration. Most of these cases (45) have the same sense;
in the remaining instances, the prediction is different from the sense of the
test query.

For the cases with the same senses for the test query and the first pre-
diction, there are four types:

22This uses the function nearest(df) in ranks.py, modifying it for either more or fewer
50, with testlab as the number in the test queries (label) and near as the number matching
the sense of the test query (label 1).

23In ranks.py with the function score low,
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• In the FN corpus, 26 of the test queries have duplicates in the corpus.
This occurs because a sentence was selected for two different preposi-
tions and were incorrectly tagged based on the same preposition.

• In the FN corpus, 4 of the test queries have duplicates but only one
preposition. There was no explanation for the duplications.

• In the CPA corpus, there were two instances with the same sentence.
There was no explanation for the duplications.

• For 13 test queries, the same sentence occurred in the FN and the
CPA corpora. This occurred because these two corpora are both used
as the same original corpus.

For the instances where the prepositions were tagged with two different
senses, there are of two types:

• Five cases have different taggings, indicating disagreement in the tag-
ging,

• In the OEC corpus, the same instances were used for two senses of
for, for 4(3a), employed by and 5(4), having (the thing mentioned) as
a purpose or function.

These situations are the kinds of detail that are relevant to any BERTological
analysis.

6.3 Ranking the Predictions

To continue the description used in G&S, we further characterized the pre-
dictions.24 We iterated through the 8231 test queries making several coun-
ters. A rank for each test query assesses how well the predictions correspond
with the training instances having the same label (senses) as the test query.
First, we counted the number of test queries for each sense (label), i.e.,
incrementing the counter by one. Second, we added the number of train-
ing instances for each sense, incrementing the counter by this frequency for
each sense, i.e., eventually multiplying the frequency by the number of test
queries. When the frequency was greater than 50, we reset the frequency to
50 (corresponding to the top 50 predictions).

We created an empty list (ranks) to hold the positions for the places
where a label n equaled the label. We iterated through the i over the range

24This uses the function rank in ranks.py, generating two dataframes, one for ranks
in 6.3.1 and one for scores in 6.3.2.
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from 1 to 50. When equal, we added that rank to ranks. If i was less than
the training frequent, we incremented a counter at score by the frequency
minus 1. A score of 50 was given if the first prediction occurred as the
nearest instance, and so down to 1 for label 50. At this point, the length
of ranks indicated how many of the 50 predictions had the same as label.
We incremented a counter at found by this length, so that this would show
how many matched for all of the test queries for a given sense. Similarly,
we incremented a counter at scores. The total score for a test query could
have a maximum of n(n+1)/2, i.e., the inverse of the sum of the integers
from 1 to n. This maximum was incremented to a counter at the optimum
(opts) possibility.

6.3.1 The Ranks Dataframe

At this point, we had the data to characterize the performance each test
query, each adding to a row in a dataframe. This row consisted of (1)
the label (sense), (2) the number of training instances for the sense (the
same value for each row for the same label), (3) how many of the training
instances were matched, (4) the score, (5) the optimum score possibility, (6)
the full label (the same as the label, but also containing the corpus source
and instance number), and (7) the full number of the training frequency (in
cases where this was more than 50). We will make some observations about
these below.

6.3.2 The Scores Dataframe

The next step is to summarize the test queries for each of the 346 labels
(senses).25 We iterate through the senses making some calculations into a
dataframe row for the scores. We set tasks to the number of test queries
for each sense. We set in50 to found[i]/freqs[i], the number of training
instances that were found divided by the desired frequencies. We set pct to
scores[i]/opts[i], the scores divided by the optimum scores, i.e., the overall
percentage for the sense. A row consisted of (1) the label (sense), (2) the
number of tasks for the sense, (3) the label frequency in the training set,
(4) a string showing in50, (5) the coverage (the percentage found in top 50
predictions), (6) a string showing the scores over the optimums, and (7) the
overall optimum score for the sense.

25This is not included for the preposition circa, which had 3 instances in the test set
and 17 in the train set. This is the only lemma that doesn’t have 50 predictions.
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6.4 Observations About the Ranks

When the label frequency is equal to or greater than 50 (reset to 50), the
optimum score is 1275. If the score is less than the optimum, this means
that a sense other than the label in the test query has been predicted. When
the label frequency is less than 50, we know that other senses for the lemma
than the one in the test query. We can scroll through each test query and
see ones that are significantly different, suggesting that the test query may
be incorrectly tagged. It is possible that the test query is ambiguous and
might be potentially tagged with more than one sense.

Scrolling through the dataframe for the test queries, distinctive instances
jump out. For example, there are 236 test queries for about 1(1), with
962 training instances. With this many training instances, most of the 50
predictions have the same sense, with only a few other senses for about.
Thus, it is striking when the score is significantly lower than 1275. We can
quickly see the sentence that resulted the distinctive difference.26 We can
see how many of the training instances were found in the top 50 predictions,
and how closely the found instances were the top predictions. When there
are several test queries, we may see that there may be grouping into sets,
perhaps wondering if there ought to be different definitions.

6.5 Observations About the Scores

As indicated above (6.3.2), the scores dataframe summarizes the results for
all tasks with the same label (sense). For each sense, we can see the number
of tasks and the number of instances (sentences) in the training set for that
sense. These two numbers are multiplied to show the number of occurrences
as the denominator to evaluate for the sense. In the in50 column, we show
how many of the top 50 predictions are present. This number is divided by
the denominator to indicate the coverage (cover column), ranging from 0
to 1. This column can be sorted and can be viewed to get an idea of which
senses for a preposition are more likely to have the variation of coverage. In
the score column, we show, for all the senses’ test queries, the total scores
out of the optimal corresponding the ranks of each prediction. This score is
shown in the opt (optimal column), also ranging from 0 to 1.

The first analysis of the dataframe examines the difference between 161
senses with high training frequencies (≥ 50) and 184 senses with low training
frequencies (<50).27 The average coverage for the high frequency senses is

26https://www.clres.com/db/TPPEditor.html
27The function dfsanal in ranks.py.
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0.62 and for the low frequency senses is 0.52. The average optimality for
the high frequency senses is 0.66 and for the low frequency senses is 0.469.
In general, the predictions for the high frequency senses are more likely to
correspond to the sense of the test query, whereas the predictions for the low
frequency senses are more likely to use other senses of the preposition than
the sense of the test query. Similarly, the predictions for the low frequency
test queries are less likely to be the nearest senses.

There are 21 senses that have coverage equal to 1 (sorting the cover
column); these include the 8 prepositions that have only one sense (Appendix
B), i.e., they cannot be polysemous. The others have a very few test queries
(1, 2, 3, 5, or 9), with a small number of training instances (6 to 16). Thus,
it doesn’t take much for all the training instances to occur in the top 50
predictions.

Senses with high coverage seem to occur in two situation. If a sense
is very distinctive among a preposition’s inventory, the instances for the
training set will tend to be quite similar. Another situation is for the first
sense of the preposition’s inventory. For example, about 1(1) has 236 test
queries out of a total of 264 (89 percent), so that it is quite likely to be
selected and thus has high coverage and very close to the optimal, i.e.,
seldom selecting a different sense.

When the coverage and/or optimum is medium (e.g., 0.50 ± 0.20), the
suggestion is that the sense is not distinctive. This occurs when the prepo-
sition has several senses that are close to each other. In these cases, the
training instances do not distinguish among the similar senses, identifying
nuances of meaning, captured by the sense inventory.

When the coverage and/or optimum is low, the training instances are
clearly inadequate to characterize the test query sense. In these cases, use of
the PDEP instances are appropriate in an attempt to understand why these
results are occurring. Examining the CPA instances in comparison with the
OEC and the FN instances may indicate that the PDEP tagging may have
been incorrect. Future steps in retagging training instances are discussed
below (section 7.3). OEC instances may also use only a few forms, but
may occur in several other forms that will not be predicted. For example,
through 9(2b) (from beginning to end of (an experience or activity, typically
a tedious or stressful one) primarily uses go and been modified by this sense,
but may use several other verb forms in the CPA and FN instances, with
the result of having lower coverage and optimality. The very next sense,
through 10(3) (so as to inspect all or part of (a collection, inventory, or
publication) uses only a few verbs (such a search through or skim through,
while the OEC instances with go through or hunt through; such training
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instances make it difficult to predict the test query.
Each test query provides considerable interest in its predictions. With

the 345 test queries (and other that could have been sufficient training num-
bers), it is likely that generalizations might be possible with further examina-
tions. This is the essence of lexicography that can use BERTology methods
that have been described above.

6.6 Frequency and Centrality of Training Instances

In considering the top 50 predictions for each test query, we wondered
whether the nearest neighbors clustered, i.e., some appeared to be more
important for the several instances with the same sense. With the meta-
data incorporating into the predictions, identifying the corpus and sentence
instance number, frequency and centrality of the training sets can be exam-
ined. We begin with the scores dataframe to use the number of task queries
(column tasks) and training instances for a sense (label) (column freq). We
use three counters for the metadata item, using the concatenation of the
corpus name and instance number.28

The first counter simply increments the number of occurrences of the
corpus-instance in the test queries.29 This number is the numerator of the
coverage calculation in the scores. For against 9(3a) (in visual contrast to),
there are 21 instances, with 5 test queries and 16 training instances. When
we examine the top 50 predictions, a corpus-instance may occur in all test
queries . In this case, we have 16 training instances and all of them occurred
in the predictions, so that when we sum this column we obtain 80 (5 * 16)
of the column occ.30 For for 4(3a), we have 9 tests; we have 48 training
instances. However, only 46 training instances occur and none of these
instances occur in all tests; the sum of this column is 209, much lower than
the full occurrences (432 = 9 * 48).31 For at 1(1), we have 112 tasks with
479 training instances; with only 50 possible predictions, the maximum is
5600 (112 * 5).32 In this case, the sum of this column is 4750; the column
contains 462 corpus-instances, with the most occurs only 53 of the 112 test
queries,

The second counter increments the position of the corpus-instance in the
50 predictions for the sense (the column locs). If a training instance is the

28The function avescore in ranks.py.
29In dfscores, columns tasks and freq
30against[’occ’].sum()
31for[’occ’].sum()
32at[’occ’].sum()
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nearest neighbor for all the test queries, i.e., has position 1, the sum of the
positions would equal to the number of test queries. This is highly unlikely
to occur. For the 16 corpus-instances of against 9(3a), the sums range from
21 to 99. The instance with the smallest sum can be viewed as most similar
to the combination of all the test queries. The range for the sums appear to
show an increasing variation and divergences from the test queries.

The third counter increments the distance of the corpus-instance in the
50 predictions for the sense (the column dists. Since the test queries for a
sense are independent of each other, the distances are not essentially com-
parable to one another. For example, against 9(3a) has three test queries
with the same locations (at 27), but their distances are different. In general,
all average distances for the predictions will need to be examined in detail.
These distances do provide useful data for further analysis.

Examining the dataframes for the senses involves several properties. We
first computed the ”average” position and the average distance for each
training instance. Only 20 of the 346 have predictions with the test query
corresponding to the training frequencies. In general, a corpus instance
with a prediction that matches the test query will not occur in all the test
queries. For example, at 1(1) has 462 distinct corpus instances for its 112
tasks, with one most common corpus instance occurring in 53 tasks and 27
different corpus instances occurring only once among the 112 tasks. The two
averages (position and distance) characterize each corpus instance, but these
need to take into account the number of occurrences in further analysis.

7 Future Questions

The discussions in the earlier sections only begin the possibilities where
BERTology can be used for lexicography. Below, We describe possible fur-
ther discussions using BERT MASKing for prepositions (7.1), examining
sentences from a different preposition (7.2), retagging training instances
(7.3)), and examining differences in the three PDEP corpora (7.4).

• CPA instances that are accurate have nearest CPA instances from
groups that are similar and when they are inaccurate do not conglom-
erate with other instances (7.3)

• Low scores for instances, particularly for CPA instances suggesting an
error in the tagging (7.3)

• Can we change a tag because it doesn’t fit and will this improve the
overall results? (7.3)
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• Are OEC and FN query instances nearest to other OEC and FN in-
stances? (7.4)

• Are CPA instances that are accurate are nearest to OEC and FN
instances (7.4)

• For instances with the same label: Do the top predictions occur several
for the times? Is there possibly a score for these?

7.1 Preposition BERT MASKing

The essence of BERTology is the use of masking a word in a sentence to see
similarities with other words. The same is true with single-word preposi-
tions. Moreover, the OEC corpus in PDEP provides an excellent test bed
to investigate the examples for each sense.33 When any corpus sentence
is used, five results are generated, identifying different prepositions, with a
score between 0 and 1.0. The sum of the five results is 1.0. In some cases,
the top score is very close to 1.0; in other cases, there may be several results
that are very similar.

Although the MASKing does not identify the senses for each similar
preposition, examination of the senses for each possibility will show very
close meanings. For example, the spatial sense of across (0.40) evokes over
(0.31), about (0.09), around (0.07), and throughout (0.07). Each of those
other prepositions also have spatial senses that can readily be identified, i.e.,
an appropriately lexicographic task.

Schneider et al. (2022) presents an inventory of adposition supersenses
that includes 600 examples in the 52 categories. Each example can be exam-
ined using BERTology MASKing. In addition, two efforts have attempted
to synchronize the PDEP senses in the supersense field with the guideline
categories (Litkowski (2021) and Litkowski (2022)). Each of these studies
can benefit from BERTological analysis. In addition, this analysis can also
benefit the PDEP substitutable preposition field, initially developed by the
lexicographer.

7.2 Sentences from a Different Preposition

The discussion of MASKing (7.1) suggests that we might be able to use a
sentence from a different preposition and see if it would be similar to its

33Use ”from transformers import pipeline” and ”unmasker = pipeline(’fill-mask’,
model=’bert-base-cased’)” to start the process. Then, use ”unmasker(”Briars and thorns
tore [MASK] my legs .”) to enter an example sentence, here for at.
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predictions. We identify similar senses (e.g., spatial senses) and can now
examine the corpus instances that have been tagged with those senses. We
will see that some of instances will generate the target preposition and some
will not. The first constitute a group that are quite similar, while the second
suggest significant differences. This analysis may cluster the instances that
have been tagged with particular senses and perhaps provide lexicographic
justification of the senses.

To examine the similarity to the predictions, we might replace the sub-
stitute preposition and then use the nearest neighbor function (e.g., as used
in G&S). With the prediction, we can examine where such a substitution
would fit with the position and the distance of the top 50 predictions.

7.3 Retagging Instances

The results from the predictions for 8231 test queries also provide the basis
for examining the accuracy of the tags for the test queries and the training
instances. The test queries are contained in 346 senses for 48 prepositions,
8 of which contain only one sense. For the other senses, we can examine
the variations among the several test queries for a single sense and among
the different senses for a preposition. In particular, we can use the results
themselves to question the accuracy of the tagging in the test query and the
several predictions for a query.

In general, we might expect that the scores for the several instances of
the same test query would be similar. Instead, a lower than the average
score for a single test query might suggest an error in its tagging. For
example, the test query for about 1(1) (FN instance 369042, ”We ’d rowed
about it endlessly , but I was quite determined ”) might be better tagged as
about 3(2): used to indicate movement within a particular area rather than
about 1(1): on the subject of; concerning. This suggestion is made based on
having this sense 3(2) frequently in the predictions (labels), compared with
the used of 1(1).

Many of the prepositions have supersenses and subsenses in their sense
inventories. Frequently, the predictions of the subsenses have lower cover-
ages and optimums in their scores as compared with the supersense scores.
This indicates that it is more difficult to discriminate the nuances in the
differences of the subsenses. (here looking at after 1(1)-525)

CPA instances that are accurate have nearest CPA instances from groups
that are similar and when they are inaccurate do not conglomerate with
other instances

Can we change a tag because it doesn’t fit and will this improve the
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Test Corpus Total FN CPA OEC

FN Instances 4673 4146 (0.887) 364 (0.078) 163 (0.035)
CPA Instances 2773 667 (0.241) 1844 (0.665) 262 (0.094)
OEC Instances 785 182 (0.232) 164 (0.209) 439 (0.559)

Total 8231 4673 (0.607) 2773 (0.288) 785 (0.105)

Table 7: Correspondence Between Test and First Prediction Corpus

overall results? If a tag is changed in a test query, we expect that (1) more
of the training instances will be found with a higher score bringing it to
closer than the optimum in ranks dataframe (6.3.1) and (2) an increased
coverage and optimums in the scores dataframe (6.3.2). If we modify the
tag of a training instance, there are two possible changes: (difficult to say
what effect this would have)

7.4 Relations Among the Corpora

Table 7 shows that the first prediction for the test query generally uses a
training instance from the same corpus. However, there are some distin-
guishes in these statistics. The FN instances have a dominant presence
from the test queries for each of the corpora, perhaps simply because FN
instances constituted the largest instances in the training sets. Similarly, the
OCE instances have the smaller presence, again in relation to the smaller
instances in the training sets.

Since the quality of the OEC corpus is likely to be the most characteristic
instances, but their use in the other two corpora does not have the expected
significance, even with those of itself. Would the other OEC instances also
be nearest instances?

Are OEC and FN query instances nearest to other OEC and FN in-
stances?

FN test queries would come from a group of sentences that would have
the same frame elements. Hence, we would expect that such instances would
be high predictions. Is this the case? How would we study this?

Are CPA instances that are accurate are nearest to OEC and FN in-
stances?
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8 Possibly Extending BERT to Obtain Structures

The results from such papers as G&S (Gessler and Schneider (2021)) show
the value of BERTology. The usual BERTology tasks do not provide ad-
ditional characterizations of properties such as part of speech and other
linguistics properties. We have been searching for other work that might
go beyond what has been developing above. The references below might be
useful in further research.

Radke et al. focuses disambiguating spatial prepositions, obtaining best
results using BERT, enhanced by adding tags to the input text to indicate
the presence of place names. They distinguish between geo-spatial, other-
spatial, and non-spatial preposition senses. ”We also experiment with a
variation on the standard input to BERT in which we tag place name words
present in the input text.” ”Extraction of geographic place names and ge-
ographic feature types from input sentence to use as features in classifiers”
(3.3) ”we experiment here with incorporating an additional feature to indi-
cate that a word in the input text is a named geographic feature” (p. 14)
One dataset was derived from the PDEP corpus. (pp. 17ff) Also included
other BERT varieties

Espinosa Anke et al. (2021) investigates the possibility of identifying
”lexical collocations in context, categorized into 17 representative semantic
categories”, then, performing ”two experiments: (1) unsupervised collocate
retrieval using BERT, and (2) supervised collocation classification in con-
text”. The collocations, heavily influenced by Mel’cukian lexical functions,
seem to go beyond the usual treatment of BERT characterizations.

Schuster and Hegelich (2022) extract ”coarse features from masked token
representations” and predict them ”by probing models with access to only
partial information”, to identify variations from ‘BERT’s point of view. In
the paper, they ”show how much the differences can be described by syn-
tax but further how they are to a great extent shaped by the most simple
positional information.”

Yu et al. (2022) was identified when searching ”Using BERT to construct
dictionary definitions”. This study focuses ”on enhancing language model
pre-training by leveraging definitions of the rare words in dictionaries (e.g.,
Wiktionary). To incorporate a rare word definition as a part of input, we
fetch its definition from the dictionary and append it to the end of the
input text sequence.” This study does not address what was sought, but it
does indicate the difficulty of interacting between BERT tasks and lexical
information.
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A Unused Words

Seventy-eight (78) prepositions were viewed as uncommon, noting 29 (bolded)
that seemed to be somewhat common, i.e., having a sufficient number of
instances that would support predictions as had been used in the core
analysis: [”’cept”, ”’gainst”, ”’mongst”, ’abaft’, ’aboard’, ’absent’, ’afore’,
’along’, ’alongside’, ’amid’, ’amidst’, ’anent’, ’anti’, ’apropos’, ’aslant’,
’astraddle’, ’astride’, ’athwart’, ’atop’, ’bar’, ’barring’, ’betwixt’, ’but’,
’by’, ’chez’, ’come’, ’concerning’, ’considering’, ’counting’, ’cum’, ’dehors’,
’down’, ’ere’, ’ex’, ’excepting’, ’excluding’, ’failing’, ’following’, ’fornent’,
’frae’, ’given’, ’less’, ’like’, ’midst’, ’minus’, ’modulo’, ’neath’, ’nigh’, ’notwith-
standing’, ”o’”, ”o’er”, ’opposite’, ’outside’, ’outta’, ’outwith’, ’overtop’,
’pace’, ’past’, ’pending’, ’plus’, ’pro’, ’qua’, ’re’, ’regarding’, ’respecting’,
’round’, ’sans’, ’save’, ”thro’”, ’throughout’, ’thru’, ’till’, ’underneath’,
’unlike’, ’upside’, ’versus’, ’vis-a-vis’, ’within’]

B Unused Senses

No needed disambiguation Eight prepositions had only one sense, not
needing any prediction, totaling 411 instances: [’besides’, ’circa’, ’despite’,
’except’, ’including’, ’per’, ’since’, ’until’]

Fewer than 5 instances Fifty-four senses had fewer that 5 instances and
were not included in the prediction, totaling 123 instances: [’about 4(3)’,
’about 6(n)’, ’across 1(1)-1’, ’as 4(n)’, ’before 4(3)’, ’besides 2(n)’, ’between 4(4)
5(4a)’, ’for 5(4)?’, ’from 1(1) 4(3)’, ’from 4(3) 12(9)’, ’in 10(7a)’, ’into 1(1)
2(2)’, ’into 9(9)’, ’of 18(9)’, ’off 7(4)’, ’off 8(n)’, ’on 1(1) 2(1a)’, ’on 21(11)’,
’on 23(13)’, ’on 6(1e)’, ’onto 9(n)’, ’over 15(6)-1’, ’over 5(2a)’, ’over 8(2d)’,
’per 2(2)’, ’per 4(n)’, ’through 12(5) 13(5a) 4(1c)’, ’through 3(1b) 10(3)-
1’, ’through 3(1b) 7(2)’, ’to 11(4b)’, ’to 12(4c)’, ’to 4(1c)’, ’to 7(2b)’, ’un-
der 13(4e)’, ’under 16(5b)’, ’under 6(2c)’, ’unto 2(2)’, ’unto 5(n)’, ’unto 6(n)’,
’unto 7(n)’, ’upon 3(1b)’, ’upon 4(1c)’, ’upon 6(1e)’, ’upon 7(2)’, ’upon 9(3a)-
1’, ’with 14(8a)’, ’with 15(9)’, ’with 2(2) 10(7a)’, ’with 3(2a) 2(2)’, ’with 3(2a)
5(3a)’, ’with 4(3) 2(2)’, ’with 4(3) 5(3a)’, ’with 6(4) 9(7)’, ’with 7(5) 9(7)’]

Few Instances These 26 common, polysemous prepositions have 50 senses
that did not occur in prediction files, but did occur in top 50 predictions:
[’about 4(3)’, ’about 6(n)’, ’across 1(1)-1’, ’after 10(5a)’, ’as 4(n)’, ’at 11(6)’,
’before 4(3)’, ’below 5(n)’, ’besides 2(n)’, ’from 5(3a)’, ’in 10(7a)’, ’in 12(9)’,
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’inside 4(1c)’, ’into 9(9)’, ’of 18(9)’, ’of 8(4)’, ’off 7(4)’, ’off 8(n)’, ’on 21(11)’,
’on 6(1e)’, ’onto 4(n)’, ’onto 9(n)’, ’over 15(6)-1’, ’over 5(2a)’, ’over 8(2d)’,
’per 2(2)’, ’per 4(n)’, ’through 6(1e)’, ’to 11(4b)’, ’to 12(4c)’, ’to 4(1c)’, ’to 7(2b)’,
’toward 5(3)’, ’under 13(4e)’, ’under 16(5b)’, ’under 6(2c)’, ’unto 2(2)’, ’unto 5(n)’,
’unto 6(n)’, ’unto 7(n)’, ’up 4(3)’, ’upon 3(1b)’, ’upon 4(1c)’, ’upon 5(1d)’,
’upon 6(1e)’, ’upon 7(2)’, ’upon 9(3a)-1’, ’with 14(8a)’, ’with 15(9)’, ’with 16(10)’]

Non-PDEP Senses Predictions are generated for 11 senses (labels) that
are not in the PDEP inventory. These are, with the 60 number of predic-
tions: ’onto 3(3)’ (1), ’at 1(1) 4(2b)’ (8), ’at 9(5) 11(6)-1’ (3), ’from 4(3)
10(7)’ (4), ’into 1(1) 3(3)’ (2), ’on 8(3) 11(5)’ (4), ’through 1(1) 3(1b)’ (22),
’through 3(1b) 10(3)’ (1), ’through 3(1b) 5(1d)’ (4), ’with 11(7b) 7(5)’ (9),
’with 2(2) 3(2a)’ (2)
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